next up previous
Next: Case Study 1: An Up: MD: Theoretical Background Previous: Newtonian Mechanics and Numerical


The Liouville Operator Formalism to Generating MD Integration Schemes

In this section, we present an elegant formalism for deriving MD integrators, as discussed by Tuckerman et al. [9]. What we present here is essentially the first two parts of the second section of Reference [9], including some of my own elaboration and some of that presented in section 4.3 of F&S.

Imagine a quantity $f$ which is a function of particle positions ${\bf r}^N$ and momenta ${\bf p}^N$. Its time derivative is given by

\begin{displaymath}
\dot{f} = \dot{\bf r}\frac{\partial f}{\partial{\bf r}} + \dot{\bf p}\frac{\partial f}{\partial {\bf p}}
\end{displaymath} (122)

We can write down a formal solution to this equation. First, define the Liouville operator as
\begin{displaymath}
iL = \dot{\bf r}\frac{\partial}{\partial{\bf r}} + \dot{\bf p}\frac{\partial}{\partial {\bf p}}
\end{displaymath} (123)

As Tuckerman points out in his coursenotes, the $i$ is there by convention and ensures that the operator is Hermitian. We can re-express Eq. 122 as
\begin{displaymath}
\dot{f} = iLf
\end{displaymath} (124)

which we solve directly to yield
\begin{displaymath}
f\left(t\right) = \exp\left(iLt\right)f\left(0\right).
\end{displaymath} (125)

If $f$ is itself a vector quantity identical to the set of positions and momenta, $\Gamma$, we have a way to express, formally, the evolution of the system:
\begin{displaymath}
\Gamma\left(t\right) = U\left(t\right)\Gamma\left(0\right)
\end{displaymath} (126)

where $U(t) = \exp\left(iLt\right)$ is the classical propagator. The idea with numerical integration is that we find a way to represent the propagator as a discrete algorithm for constructing the system at some time $t + \Delta t$ given the system at time $t$.

Let's build our discrete integrator by decomposing the operator:

\begin{displaymath}
iL = iL_1 + iL_2
\end{displaymath} (127)

This does not necessarily lead to two independent propagators, because the two components do not commute; that is:
\begin{displaymath}
\exp\left[\left( iL_1 + iL_2\right)t\right] \ne \exp\left(iL_1t\right)\exp\left(iL_2t\right)
\end{displaymath} (128)

Consider the action of the partial Liouville operator

\begin{displaymath}
iL_1 \equiv \dot{\bf r}\left(0\right)\frac{\partial}{\partial{\bf r}},
\end{displaymath} (129)

which gives
$\displaystyle f\left[{\bf p}^N\left(t\right),{\bf r}^N\left(t\right)\right]$ $\textstyle =$ $\displaystyle \exp\left[t\dot{\bf r}\left(0\right)\frac{\partial}{\partial{\bf r}}\right]
f\left[{\bf p}^N\left(0\right),{\bf r}^N\left(0\right)\right]$ (130)
  $\textstyle =$ $\displaystyle \sum_{n=0}^{\infty} \frac{\left(\dot{\bf r}\left(0\right)t\right)...
...\partial{\bf r}^n}f\left[{\bf p}^N\left(0\right),{\bf r}^N\left(0\right)\right]$ (131)
  $\textstyle =$ $\displaystyle f\left[{\bf p}^N\left(0\right),{\bf r}^N\left(0\right)+\dot{\bf r}\left(0\right)\right]$ (132)

The last line is the collapse of the Taylor expansion of the line immediately above it. So, the effect of this operator fragment is a simple shift of coordinates given some initial velocities. This is an interesting fact: we can consider first-order integration as a Taylor expansion.

The next step of Tuckerman was to apply the Trotter identity:

\begin{displaymath}
\exp\left[\left( iL_1 + iL_2\right)t\right] = \lim_{P\righta...
...ght)\exp\left(iL_t2/P\right)\exp\left(iL_1t/2P\right)\right]^P
\end{displaymath} (133)

When $P$ is large but finite:
\begin{displaymath}
\exp\left[\left(iL_1 + iL_2\right)t\right] =
\left[\exp\lef...
...\right)\right]^P\exp\left[\mathscr{O}\left(1/P^2\right)\right]
\end{displaymath} (134)

Now, we define a finite timestep as $\Delta t = t/P$ and we have then a discrete operator that, when applied to a configuration at time $t$, will produce the configuration at time $t + \Delta t$:
\begin{displaymath}
\exp\left(iL_1\Delta t/2\right)\exp\left(iL_2\Delta t\right)...
...t/2\right)\Gamma\left(t\right) = \Gamma\left(t+\Delta t\right)
\end{displaymath} (135)

By performing this operation sequentially $P$ times, we recover a discretized version of the formal solution to generate $\Gamma\left(t\right)$ given $\Gamma\left(0\right)$.

Now we explicitly consider the decomposition:

$\displaystyle iL_1$ $\textstyle =$ $\displaystyle \dot{\bf p}\left(0\right)\frac{\partial}{\partial{\bf p}}$ (136)
$\displaystyle iL_2$ $\textstyle =$ $\displaystyle \dot{\bf r}\left(0\right)\frac{\partial}{\partial{\bf r}}$ (137)

We can perform one $\Delta t$'s worth of update using the following operation on $f$:

\begin{displaymath}
\exp\left(\dot{\bf p}\left(0\right)\left(\frac{\partial}{\pa...
...f\left[{\bf p}^N\left(t\right),{\bf r}^N\left(t\right)\right]
\end{displaymath}

The action of the rightmost operator, $\exp\left(\dot{\bf p}\left(0\right)\left(\frac{\partial}{\partial{\bf p}}\right)\frac{\Delta t}{2}\right)$:

\begin{displaymath}
f\left[{\bf p}^N\left(t\right),{\bf r}^N\left(t\right)\right...
...t\right)\right]^N,\left[{\bf r}\left(t\right)\right]^N\right\}
\end{displaymath}

The action of the next rightmost, $\exp\left(\dot{\bf r}\left(0\right)\left(\frac{\partial}{\partial{\bf r}}\right)\Delta t\right)$:

\begin{displaymath}
f\left\{\left[{\bf p}\left(t\right)+\frac{\Delta t}{2}\dot{\...
... t \dot{\bf r}\left(\frac{\Delta t}{2}\right)\right]^N\right\}
\end{displaymath}

Then, the action of the final operator:

\begin{displaymath}
f\left\{\left[{\bf p}\left(t\right)+\frac{\Delta t}{2}\dot{\...
...\dot{\bf r}\left(\frac{\Delta t}{2}\right)\right]^N\right\}\\
\end{displaymath}

Noting that ${\bf p} = m\dot{\bf r}$ and ${\bf F} = m{\bf a} = \dot{\bf p}$, we can summarize the effect of this three-step update of the positions and velocities as

$\displaystyle {\bf r}\left(\Delta t\right)$ $\textstyle =$ $\displaystyle {\bf r}\left(0\right) +
\Delta t \dot{\bf r}\left(0\right) +
...
...left(\Delta t\right)^2}{2}
\frac{{\bf F}\left[{\bf r}\left(0\right)\right]}{m},$ (138)
$\displaystyle \dot{\bf r}\left(\Delta t\right)$ $\textstyle =$ $\displaystyle \dot{\bf r}\left(0\right) + \frac{\Delta t}{2m}
\left\{{\bf F}\le...
...left(0\right)\right] + {\bf F}\left[{\bf r}\left(\Delta t\right)\right]\right\}$ (139)

This is the velocity-Verlet algorithm, seen previously in Eqs 119-121. Interestingly, we can also reverse the order of the decomposition; i.e.,

$\displaystyle iL_1$ $\textstyle =$ $\displaystyle \dot{\bf r}\left(0\right)\frac{\partial}{\partial{\bf r}}$ (140)
$\displaystyle iL_2$ $\textstyle =$ $\displaystyle \dot{\bf p}\left(0\right)\frac{\partial}{\partial{\bf p}}$ (141)

The update algorithm that arises is
$\displaystyle \dot{\bf r}\left(\Delta t\right)$ $\textstyle =$ $\displaystyle \dot{\bf r}\left(0\right) +
\Delta t {\bf F}\left[{\bf r}\left(0\right) +
\frac{\Delta t}{2m}\dot{\bf r}\left(0\right)\right]$ (142)
$\displaystyle {\bf r}\left(\Delta t\right)$ $\textstyle =$ $\displaystyle {\bf r}\left(0\right) +
\frac{\Delta t}{2}\left[\dot{\bf x}\left(0\right)
+\dot{\bf x}\left(\Delta t\right)\right].$ (143)

This is termed the position Verlet algorithm [9]. Tuckerman et al. showed that this new algorithm results in a slightly lower drift in total energy in MD simulation of a simple Lennard-Jones fluid, when the time-step is greater than about 0.004.


next up previous
Next: Case Study 1: An Up: MD: Theoretical Background Previous: Newtonian Mechanics and Numerical
cfa22@drexel.edu