
Department of Chemical and Biological Engineering
June 14, 2023

CHE T580: Modern Molecular Simulations

Cameron F. Abrams

1 Introduction
1.1 Course Objectives

The objective of this course is to provide graduate students with a basic understanding of molecular
simulation. The level of understanding we will target involves both the skills to critique current molecular
simulation research in the students’ respective fields and to develop simple simulation experiments that
may contribute to students’ original research.

1.2 Course Outline
• Statistical Mechanics
• Computing under GNU/Linux
• Monte Carlo Simulation (MC)
• Molecular Dynamics Simuation (MD)
• Modern Open-Source MD Packages
• Visualization
• Course Projects

1.3 Prerequisites
Calculus and differential equations through the undergraduate level. Undergraduate physical chem-

istry (rudimentary quantum and statistical mechanics). Some knowledge of programming in C, FOR-
TRAN, and/or Python will be helpful. A laptop on which various software can be installed (more on that
in Assignment 1). You must have a github account.

1.4 Introductory Remarks
In this course, we are concerned with systems of many particles. Such a system models a chunk of

matter, and the particles are its constituents. Statistical mechanics allows us predict the macroscopic
properties and behavior of matter when conceptualized as collections of many (∼ 1023) particles, and it
is the central theme of this course. As we will see, the formalism of statistical mechanics allows straight-
forward analytical treatment of only a few simple systems. The primary motivation behind molecular
simulation is to apply the framework of statistical mechanics in the prediction of macroscopic behavior
for relatively “complicated” systems. The two major branches of molecular simulation we will consider
are (1) Monte Carlo (MC) and (2) molecular dynamics (MD).

Statistical mechanics is a broad subject, and we will restrict ourselves in this course to stat mech
at the introductory level. The lessons of elementary stat mech will be reinforced time and time again
throughout the course as we explore aspects of molecular simulation techniques. Stat mech is not nor-
mally taught to engineering students outside a general course on physical chemistry. (Undergraduates
in physics or chemistry might get a one or two course series on statistical mechanics.)

A second component of this course is programming. Most engineering students take a programming
course, so some exposure to computer programming is expected as a prerequisite. It will be necessary
to discuss certain simulation algorithms using “pseudo-code” examples, or even examples written in C
or FORTRAN or Python. The level of code presented in this course will generally be sufficiently basic

1

1 INTRODUCTION

such that novices can understand it line by line. For example, see if you can predict what the following
C program does:

#include <stdio.h>
int main () {

int i;
for (i=0;i<100;i++) printf("Hello , I am number %i\n",i);

}

Maybe you’d like it better in Python:

for i in range (100):
print(’Hello , I am number ’,i)

If it looks somewhat mysterious to you, don’t worry. Part of this course will be explaining how code
works. By the end of the course, you would be able to write the above program had I told you to write
a program to output the numbers 0 - 99. It must be emphasized at this point that I do not intend to turn
you all into expert coders (though there are worse things to aim for). This is a survey course from which
I hope you gain an accurate picture of the field of molecular simulation from which you can begin your
own exploration. In order to achieve this goal, it is necessary to do some minor work with actual code.

A closely related aspect of this component is the practical matter of how one works with simulation
code. My preference, and therefore the manner in which I teach the course, is to use a command-line
environment, as opposed to a graphical user environment. It should be emphasized that the concepts
and ideas that form the backbone of this course are not operating system-specific. However, the imple-
mentation of those ideas and concepts, as I hope you will see, is straightforward once you know how
to compile and run simple programs at the command-line. Again, this will be at a basic level; this is not
a programming course. All of the production MD codes we consider later in the course are exclusively
used in a command-line environment. For writing and editing code, I recommend VSCode.

Much of this course is based on the book Understanding Molecular Simulation by Daan Frenkel
and Berend Smit, [1] two chemical engineers from Amsterdam. There are several other books which
I have used on occasion, the most useful of which was Computer Simulation of Liquids by Allen and
Tildesly. [2].

2

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

2 Statistical Mechanics: A Brief Introduction
This course is centered upon a mathematical statement called an “ensemble average”:

〈G〉 =
∑
ν

PνGν (1)

That is, the expectation value, 〈G〉, of some observable property G is an average over all possible
microstates available to a system, indexed by ν, where Pν is the probability of observing the system
in microstate ν, and Gν is the value of the measured property G when the system is in microstate ν.
Before even considering how to use computer simulation to make such a measurement of a particular
property for a particular system, there are three main issues to consider:

1. What is a microstate?
2. What is meant by observing the system?
3. How do we calculate probabilities?
In the following subsections, we give a cursory treatment of elmentary statistical mechanics aimed

at answering these questions. The aim is to give the student an appreciation of the basic physics that
underlies a majority of current molecular simulation.

2.1 Microstates and Degeneracy
A microstate is a full specification of all degrees of freedom of a system. In quantum mechanics,

degrees of freedom are quantum numbers. The index ν in Eq. 1 runs over all unique combinations of
quantum number values. Equilibrium (eigen)solutions of the Schrödinger equation define the energy
Eν of any state ν:

H |ν〉 = Eν |ν〉 , (2)

where H is the Hamiltonian operator, |ν〉 is shorthand for the system wavefunction in state ν, and Eν
is the energy of state ν (Eν is an eigenvalue of the Schrödinger equation). In contrast to model systems
usually considered in elementary quantum mechanics, the number of distinct microstates of systems
with energy E and comprising ∼ 1023 particles is very large, and this set of eigenstates is in practice
impossible to obtain explicitly. This is indeed why we must instead treat this set statistically. We refer
to the number of states that satisfy a given energy as the degeneracy of the energy level E, denoted
Ω(E,N, V):

Ω(N,V,E) =
number of microstates with N and V and
energy between E and E + δE.

The many states contributing to the count Ω(N,V,E) is called a microcanonical ensemble. Because
one in principle can partition state space into non-overlapping sets of states where each set represents
a unique value of E, Ω is also called the “microcanonical partition function”.

The Ising spin lattice is a simple statistical mechanical model with discrete energy levels which we
can now introduce to gain some understanding of what it means to say Ω is “large.” Imagine a linear
array of N spins, each pointing either “up” or “down.”

0 N1 2 3 4 5 6

Figure 1: A 1-D Ising system.

3

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

Let us suppose that the Hamiltonian of this system is given by

H = h

N∑
i=1

si (3)

where si is -1 if spin i is “down” and +1 if spin i is “up,” and h is some unit of energy. Let m denote
the number of spins that are up out of the N spins, and let Ω(N,m) be the number of realizations of
the N spin states for which m spins are up. The ground state, the state with the lowest energy, has all
spins down, so Ω(N, 0) = 1. The next state up has one spin up, but there are N possible microstates
that have this energy: Ω(N, 1) = N . The next state up has two spins, and there are N(N − 1)/2 such
microstates: Ω(N, 2) = N(N − 1)/2. For m spins flipped, there are

Ωm =
N !

(N −m)!m!
(4)

distinct microstates. You can now easily see that working with Ω for statistical mechanical systems
means working with enormous numbers. For the rather small system of 100 spins, if we ask how many
states are there with 50 spins up, we see Ω(100, 50) ≈ 1029.

Although quantum mechanics tells us that atomic systems have discrete energy levels, when sys-
tems contain very large numbers of atoms, these energy levels become so closely spaced relative to
their span that they may effectively be considered a continuum. We can thus pass into a classical (as
opposed to quantum mechanical) representation, where the microstate for a system of N particles is
specified by a point in a 6N -dimensional phase space:(

rN , pN
)
≡ (r1, r2, ..., rN ;p1,p2, ..., pN) . (5)

where ri is the 3-space position of particle i and pi is its momentum. We can denote the number of
states in a classical microcanonical ensemble by integrating over all of phase space and plucking out
those states for which the energy is E using the Dirac delta function:

Ω(N,V,E) =
1

h3NN !

∫
V
dr1

∫
V
dr2 · · ·

∫
V
drN

∫
R3

dp1

∫
R3

dp2 · · ·
∫
R3

dpNδ
[
H
(
rN ,pN

)
− E

]
(6)

≡
∫ ∫

drNdpNδ
[
H
(
rN ,pN

)
− E

]
, (7)

(The second line introduces some shorthand notation.) The delta function integrand has units that are
the reciprocal of its argument, so Ω is more precisely termed the “density of states” and is directly
related to Ω:

ΩδE = Ω (8)

This definition satisfies the idea that the integral of Ω over the entire continuous domain of energy E
should equal a complete integral over all of phase space.

The microcanonical ensemble represents a hyperdimensional surface in the phase space dimen-
sioned by N particles with positions limited by the extent of V . The factorial in Eq. 6, N !, takes into
account that the particles are indistinguishable; that is, all orderings of particle indices 1, 2, . . . N, are
treated identically. h is Planck’s constant; note that it has units of length•momentum. Think of it as a
quantum-mechanically-required “mesh discretization” for continuous space (it arises due to the Heisen-
berg uncertainty relation). It also nondimensionalizes the partition function. We will encounter it again
in the next section, but we will also see why these “prefactors” are not essential ingredients of most
molecular simulations.

4

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

You may wonder why there seem to be two viewpoints of statistical mechanics, quantum and clas-
sical. First, there really aren’t two viewpoints: the classical picture is an approximation of the more
general quantum mechanical picture. But statistical mechanics as a discipline was first formalized by
Gibbs and Boltzmann before quantum mechanics was widely accepted, so it dealt necessarily with
systems of classical particles obeying Newtonian equations of motion; that is, on classical mechanics.
There appears to be a general consensus that it is easier to introduce statistical mechanical concepts
using the “sum-over-states” notation of quantum statistical mechanics, rather than the apparently more
cumbersome (and anyway approximate) “integral-over-phase-space” notation of classical statistical me-
chanics.

2.2 Making Observations: The Ergodic Hypothesis
Scientists are taught early on that when conducting measurements, one must perform repeated

experiments and average the results. If one makes N independent measurements of some observable
G, one computes the mean value as

Gobs =
1

N

N∑
i=1

Gi. (9)

We now imagine that the time of a measurement is so short that we know that the system is in only one
of its many possible microstates. This means we can write

Gobs =
∑
ν

[
1

N

(
number of times state ν is

observed in the N observations

)]
Gν , (10)

where Gν was introduced previously (Eq. 1) as the value of observable G when the system is in state
ν.

Now we have to imagine that our system is evolving in time. As it evolves, its degrees of freedom
change values, and the system is thought of as tracing out a trajectory in state space. (“State space” is a
Hilbert space spanned by all states |ν〉 in the quantum mechanical case, or phase space in the classical
case.) How is the system evolving? The system wavefunction evolves according to Schrödinger’s
equation, while particles in a classical system follow Newtonian mechanics. As the experimenters,
we control the system by specifying a handful of variables, such as its total energy, E, the number
of particles, N , and the volume, V . These constraints force the system’s trajectory to remain in a
designated partition of state space.

The key assumption we make at this point is that, if we wait long enough, our system will visit
every possible state; that is, the trajectory will eventually pass through every available point in state
space consistent with our constraints (that is, all states in the partition). If this is true, and we make N
independent observations, then the number of times we observe the system in state ν divided by the
number of observations, N , is the probability of observing state ν, Pν , if we happen to make a random
observation. So, Eq. 10 above becomes the ensemble average first presented in Eq. 1:

Gobs =
∑
ν

PνGν = 〈G〉 (11)

This assumption is important: it is referred to as the ergodic hypothesis. A system is “ergodic” if, after
a sufficiently long time, it visits all possible state space points consistent with whatever constraints are
put on it. We cannot in general prove that any system is ergodic; it is something we are comfortable
assuming for most systems based on our physical intuition. There are, however, many systems which
are non-ergodic on the time-scales they are measured. The ergodic hypothesis is only strictly true
when the number of measurements taken is sufficiently long that the computed probabilities Pν no

5

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

longer change, which can only be guaranteed for an infinite number of observations:

〈G〉 = lim
N →∞

1

N

N∑
i=1

Gν(i) (12)

where ν(i) refers to the state of the system at measurement i.
Another important consideration is the following: How far apart must the N independent measure-

ments be from one another in time to be considered truly “independent”? To answer this question,
we must introduce the notion of a relaxation time, τrelax, which arises naturally due to the presumably
chaotic nature of the microscopic system. Given some initial conditions, after a time τrelax has elapsed,
the system has “lost memory” of the initial condition. We measure this loss of memory in terms of
correlation functions, which will be discussed in more detail later. If we wait at least τrelax between
successive observations, we know they are more likely to be independent. It turns out that one can
use simulation methods to estimate relaxation times (and their spectra; many systems display a broad
spectrum of relaxation times, each element cooresponding to a particular type of molecular motion).
We will pay particularly close attention to τrelax in upcoming sections.

2.3 Entropy and Temperature
Eq. 2.1 introduced the quantity Ω(N,V,E) as the number of states available to a system under the

constraints of constant number of particles, N , volume, V , and energy E. The fundamental postulate
of statistical mechanics, also called the “rational basis”, is the following:

In statistical equilibrium, all states consistent with the constraints of N , V , and E are
equally probable.

or
Pν = 1/Ω(N,V,E). (13)

This relation is often referred to as a statement of the “equal a priori probabilities in state space.” Another
way of saying the same thing: The probability distribution for states in the microcanonical ensemble is
uniform.

This postulate reflects the fact that we are maximally uncertain with regards to the probabilities of
any particular arrangements of degrees of freedom inside a closed system. A closed system is one
which cannot exchange energy, volume, or particles with the environment. As such, there is quite
literally no way for us to learn anything at all about how particles are arranged, so we must assume all
arrangments that satisfy the given energy, volume and number of particles are equiprobable.

One link between statistical mechanics and classical thermodynamics is given by a definition of
entropy:

S ≡ kB ln Ω (14)

Note two important properties of S. First, it is extensive: if we consider a compound system made of
subsystems A and B with ΩA and ΩB as the respective number of states, the total number of states is
ΩAΩB , and therefore S = SA + SB . Second, it is consistent with the second law of thermodynamics:
putting any constraint on the system lowers its entropy because the constraint lowers the number of
accessible states.

Temperature is defined using entropy: 1/T ≡ (∂S/∂E)N,V , or

β = (kBT)−1 = (∂ ln Ω/∂E) (15)

Now we will consider constraining our system not with constant E, but with constant T . The set of
all possible states satisfying constraints of N , V , and T is called the canonical ensemble. We now

6

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

ask, what is the probability of any microstate in this ensemble? Consider a closed system divided
into a small subsystem A surrounded by a large “bath” B. We imagine that these two subsystems
exchange only thermal energy, but no particles, and their volumes remain fixed. We seek to compute
the probability of finding the total system in a state such that subsystem A has energy EA. The entire
system is microcanonical, so the total energy, E is constant, as is the total number of states available
to the system, Ω(E) (we omit the N and V for simplicity).

When A has energy EA, the total system energy is E = EA + EB , where EB is the energy of the
bath. By constraining system A’s energy, we have reduced the number of states available to the whole
system to Ω(E − EA). So, using the fundamental postulate, the probability of observing the closed
system in a state in which subsystem A has energy EA is

PA =

[
Number of states for which
subsystem A has energy EA

]
[

Number of states available
to entire system

] =
Ω (E − EA)

Ω (E)
(16)

We can expand Ω (E − EA) in a Taylor series around EA = 0:

PA ∝ Ω (E − EA) = exp [ln Ω (E − EA)] (17)

= exp

[
ln Ω (E)− EA

∂ ln Ω

∂E
+ · · ·

]
, (18)

where the partial derivative implies we are holdingN and V fixed. We can truncate the Taylor expansion
at the first-order term, because higher order terms become less and less important as the size of
subsystem B becomes larger and larger. What results is the Boltzmann distribution law for energies of
a system at constant temperature:

PA ∝ exp (−βEA) (19)

The normalization condition requires that for all energies of subsystem A, EA,∑
A

PA = 1 =
∑
A

exp (−βEA) ≡ Q (N,V, T) , (20)

which defines the canonical partition function, Q. Therefore,

PA = Q−1 exp (−βEA) (21)

Because some energies can correspond to more than one microstate, we should distinguish between
“states” and “energy levels.” We can express the canonical partition function as

Q =
∑
ν

states

e−βEν =
∑
l

levels

Ω (El) e
−βEl (22)

where, as we have seen, Ω (E) is the number of microstates with energy E. Moving to the continuum
limit, and assuming a reference energy of Eref = 0,

Q→
∫ ∞

0
dEΩ (E) e−βE (23)

7

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

where Ω (E) is the density of states. What is this equation telling us? It is telling us thatQ is the Laplace
transform of Ω. We know that transform pairs are unique, and hence, both Q and Ω contain the same
information.

We recognize that for a system described by a canonical ensemble, the energy is a fluctuating
quantity. And we now have the probability of observing a state with a given energy, so we can use Eq. 1
to compute the average energy, 〈E〉. Consider

〈E〉 = 〈Eν〉 =
∑
ν

PνEν (24)

=

[∑
ν

Eν exp (−βEν)

]/[∑
ν

exp (−βEν)

]
(25)

Notice that ∑
ν

Eν exp (−βEν) = − (∂Q /∂β) (26)

Recalling that d ln f(x)/dx = 1/fdf/dx, we see that

〈E〉 = − (∂Q /∂β) /Q (27)

= − (∂ lnQ /∂β)N,V (28)

Now, let us consider the average magnitude of the fluctuations in energy in the canonical ensemble.〈
(δE)2

〉
=

〈
(E − 〈E〉)2

〉
(29)

=
〈
E2
〉
− 〈E〉2 (30)

=
∑
ν

PνE
2
ν −

(∑
ν

PνEν

)2

(31)

= Q−1

(
∂2Q

∂β2

)
N,V

−Q−2

(
∂Q

∂β

)2

N,V

(32)

=

(
∂ lnQ

∂β2

)
N,V

= −
(
∂ 〈E〉
∂β

)
N,V

(33)

Now, noting that the definition of heat capacity at constant volume, Cv, is

Cv =

(
∂E

∂T

)
(34)

we see that 〈
(δE)2

〉
= kBT

2Cv (35)

This is an interesting statement. It relates the magnitude of spontaneous fluctuations in the total energy
of a system to that system’s capacity to store or release energy due to changing its temperature.

The fact (Eq. 28) that the average energy in the canonical ensemble is related to a derivative of the
log of the partition function implies that lnQ is an important thermodynamic quantity. So, let’s go back
to our undergraduate thermodynamics course(s) and recall the following statement of the 1st and 2nd
Law:

dA = −SdT − pdV + µdN (36)

8

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

where A is the Helmholtz free energy, defined in terms of internal energy and entropy as

A = 〈E〉 − TS (37)

Now, consider the following derivative of A:(
∂ (A/T)

∂ (1/T)

)
N,V

= A+
1

T

(
∂A

∂ (1/T)

)
N,V

(38)

= A− T
(
∂A

∂T

)
N,V

= A+ TS = 〈E〉 . (39)

Therefore, (
∂ (βA)

∂β

)
N,V

= 〈E〉 . (40)

Considering Eq. 28, we see that
lnQ+ C = −βA (41)

which does indeed suggest an important link between lnQ and the important thermodynamic quantity,
the Helmholtz free energy. But what is the constant C? To evaluate it, consider the “boundary condition”
as T → 0:

Q =
∑
ν

e−βEν
T→0−→ e−βEground . (42)

Here, we have assumed that the degeneracy of the ground state, Ω (Eground) is 1. This tells us that

lim
T→0

lnQ = −βEground (43)

Using this fact, and combining Eqs. 37 and 41, as T → 0, we see that

− βEground + C = −β 〈E〉︸︷︷︸
Eground

− S

kB︸︷︷︸
→0 (Ω=1)

, (44)

Hence, C = 0. So,
lnQ = −βA. (45)

The quantity −β−1 lnQ is the Helmholtz free energy, A.

2.4 Classical Statistical Mechanics
Analogous to the quasi-classical microcanonical paritition function of Eq. 6, here is the quasi-

classical representation of the canonical partition function:

Qclassical =
1

hdNN !

∫ ∫
drNdpN exp

[
−βH

(
rN ,pN

)]
(46)

H
(
rN ,pN

)
is the Hamiltonian function which computes the energy of a point in phase space. The

probability of a point in phase space is represented as

P
(
rN ,pN

)
= (Qclassical)

−1 exp
[
−βH

(
rN ,pN

)]
. (47)

9

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

So, the general “sum-over-states” ensemble average of quantum statistical mechanics, first presented
in Eq. 1, becomes an integral over phase space in classical statistical mechanics:

〈G〉 =

∫ ∫
drNdpN exp

[
−βH

(
rN ,pN

)]
G
(
rN ,pN

)
∫ ∫

drNdpN exp
[
−βH

(
rN ,pN

)] , (48)

where G
(
rN ,pN

)
is the value of the observable G at phase space point

(
rN ,pN

)
. Before moving on,

it is useful to recognize that we normally simplify this ensemble average by noting that, for a system of
classical particles, the usual choice for the Hamiltonian has the form

H
(
rN ,pN

)
= K

(
pN
)

+ U
(
rN
)

(49)

where K is the kinetic energy, which is only a function of momenta, and U is the potential energy,
which is only a function of position. The canonical partition function, Q, can in this case be factorized:

Q (N,V, T) =
1

h3NN !

{∫
dpN exp

[
−βK

(
pN
)]}{∫

drN exp
[
−βU

(
rN
)]}

(50)

=

{
V N

h3NN !

∫
dpN exp

[
−βK

(
pN
)]}{

V −N
∫
drN exp

[
−βU

(
rN
)]}

(51)

= QidealZ (52)

The quantity in the left-hand braces is the ideal gas partition function, because it corresponds to the
case when the potential U is 0. (Note that we have multiplied and divided by V N ; this is the equivalent
of scaling the positions in the integration over positions.) The quantity in the right-hand braces is called
the configurational partition function, Z.

Because the kinetic energy K has the simple form,

K
(
pN
)

=
∑
i

p2
i

2mi
, (53)

where mi is the mass of particle i, the integral over particle momenta can be evaluated analytically:∫
dpN exp

[
−βK

(
pN
)]

=
3N∏
i=1

∫
dpi exp

(
− p2

i

2mkBT

)
(54)

= (2πmkBT)3N/2 . (55)

(We have assumed all particles have the same mass, m; in the case of distinct masses, this is just a
product of similar factors.)

Qideal becomes

V N

N !h3N

∫
dpN exp

[
−βK

(
pN
)]

=
V N

N !

(√
2πmkBT

h2

)3N

(56)

= Qideal (N,V, T) =
V N

N !Λ3N
(57)

where Λ is the de Broglie wavelength, a quantum-mechanical property of a particle inversely propor-

10

2 STATISTICAL MECHANICS: A BRIEF INTRODUCTION

tional to its momentum (and thus inversely proportional to the square root of temperature):

Λ =

√
h2

2πmkBT
(58)

As an example, for a hydrogen atom with mass 1 amu and at room temperature (298 K), Λ ≈ 1 Å. The
de Broglie wavelength limits the precision by which a particle’s position can be determined; for H atoms
at room temperature, one is not permitted to specify their positions with a precision finer than about 1
ångstrom without violating the Heisenberg uncertainty principle of quantum mechanics. However, as
we will see, in classical molecular simulations, we must lift this restriction, while never forgetting that
this makes a classical representation of a molecule somewhat less realistic.

With the momentum degrees of freedom handled at finite temperature, when the observable G is a
function of positions only, the ensemble average becomes a configurational average:

〈G〉 = Z−1

∫
drN exp

[
−βU

(
rN
)]
G
(
rN
)
. (59)

Note that the integration over momentum yields a factor Qideal in both the numerator and denominator,
and thus divides out. We can write this configurational average using a probability distribution, ρNV T ,
as

〈G〉 =

∫
drNG

(
rN
)
ρNV T

(
rN
)

(60)

where
ρNV T

(
rN
)
≡ Z−1e−βU(rN) (61)

is called the “canonical probability distribution.” As pointed out on p. 15 of Frenkel & Smit [1], Eq. 59 is
“the starting point for virtually all classical simulations of many-body systems”; that is, it is the starting
point for almost all simulations discussed in this course.

11

3 LINUX AND SCIENTIFIC COMPUTING

3 Linux and Scientific Computing
3.1 The Linux Ecosystem

Molecular simulations are one class of applications of high-performance computing (HPC). HPC
generally refers to the hardware and software environment that allows users to run simulations of many
hundreds of thousands of degrees of freedom (or more) distributed across multiple processing elements
(PE) and even over multiple nodes, in a shared, general-purpose cluster. Essentially all HPC clusters
nowadays run the Linux operating system, and users are (mostly) expected to interact with such clusters
via the command-line. For this class, we will mostly restrict our explorations to systems that are small
enough NOT to require HPC hardware in order to run them. However, we will focus on building skills
with the Linux command-line. If you are already familiar with the Linux command line, you can skip this
subsection.

Linux is an operating system. The most basic (and sufficient) way to interact with Linux is via the
command-line. The program responsible for monitoring the command-line, allowing the user and the
operating system to interact, is called a shell. There are many types of shell programs you can choose
to run, but the default for most Linux versions nowadays is bash. This is also the default shell when
you install Ubuntu on WSL2 in Windows; in macOS X, the default shell is zsh, but this can easily be
changed to bash (though this is not strictly necessary). I will demonstrate some simple exercises in
bash here. In all the examples, the $ refers to the bash prompt.

3.1.1 Handling Files and Directories at the Command-Line Interface
Let’s first create a subdirectory for holding all your work in this course in your WSL:

$ cd
$ mkdir cheT580
$ cd cheT580

The cd command alone sets the current working directory to your home directory (/home/username/).
The mkdir command makes a new subdirectory under the current working directory, and the second
cd changes the current working directory to be that directory. (rmdir can remove an empty directory.)

Now, lets create a simple file here, just to play around with.

$ echo "Hello , world!" > my_file.txt
$ ls
my_file.txt
$ cat my_file.txt
Hello , world!
$ rm my_file.txt
$ cat my_file.txt
cat: my_file.txt: No such file or directory

What did we do here? We created a file by redirecting the output of the echo command to my_file
.txt. (There are many, many ways to create a file; this is just one.) We then used the ls command to
show all files and subdirectory names in the current working directory; my_file.txt just happens to be
the only one. We then displayed the contents of this file to the terminal using the cat command. Finally,
we removed the file using rm, and when we then try to cat it, we get an error message indicating the
file no longer exists.

Enough playing around. Let’s make a directory called assignment1:

$ mkdir assignment1

Maybe you don’t like that name; you can destroy it with rmdir:

12

3 LINUX AND SCIENTIFIC COMPUTING

$ rmdir assignment1

Let’s not actually destroy this directory. If you just destroyed it, recreate it. Let’s cd into it, and then
clone the github repository for assignment1:

$ cd assignment1
$ git clone github.com:<repository -name >

Here, <repository-name> should be replaced with the actual name. Now, you can follow the instruc-
tions in the README.md you are viewing on github.

Some other things: You can cd “up” to the parent directory of the current working directory like this:

$ cd ..

You can always ask the shell to tell you what the current working directory is using pwd:

$ pwd
/home/<username >/ cheT580
$

No matter what your current working directory is, you can cd to your home directory like this:

$ cd

Go to your home directory, and let’s play with files a bit more. Let’s create a new text file with the
cat command. Type the following:

$ cat > my_file
This is a test file.
Don’t panic.
<Ctrl -D>
$

<Ctrl-D> means perform the “control-D” key sequence, which signifies to the cat command that you
are finished writing to the file. The cat command on the first line waits for you to type some file contents
into the terminal, and the > redirects that input to cat to my_file. Now, we can list the contents of the
current directory (which is your home directory here) with the command ls. Guess what we will see?

$ ls
cheT580 my_file
$

If we use the -F flag with ls, we can easily see which files are files and which are directories:

$ ls -F
cheT580/ my_file
$

See the “/” after assignment1? That means it is a directory. Now, make a copy of the file my_file
called my_file2 using the cp command:

$ cp my_file my_file2
$ ls
cheT580/ my_file my_file2
$

We can rename a file with the mv command. Rename my_file2 to my_file3:

13

3 LINUX AND SCIENTIFIC COMPUTING

$ mv my_file2 my_file3
$ ls -F
cheT580/ my_file my_file3

Notice that my_file2 no longer exists. Now, move my_file3 into the cheT580/ directory with mv:

$ mv my_file3 assignment1
$ ls -F
cheT580/ my_file
$ ls -F cheT580
my_file3 assignment1/
$

Notice that the last command lists the contents of the cheT580 directory. We could also cd into that
directory and just type ls -F; we would see the same thing.

Those are all the basic file handling skills you will need to work with code for this course.

3.1.2 Pathnames
An important concept that arises because of the directory structure of Linux filesystems is are rela-

tive and absolute pathname. “Relative” always refers to the current working directory, while “absolute”
always refers to the root directory. Suppose that in the assignment1 subdirectory of your cheT580
subdirectory of your home directory, there is a file called my_file. That file can be referred to from
any other directory using either a relative or an absolute pathname. Suppose you are in your home
directory and you want to view the contents of that file using cat:

$ cd
$ cat cheT580/assignment1/my_file

The string cheT580/assignment1/my_file is the pathname of that specific file relative to your home
directory. Now, no matter what directory you are in, you can always refer to a file using its unique
absolute pathname:

$ cat /home/<username >/ cheT580/assignment1/my_file

Absolute pathnames are a pain to type, but they have the benefit of being completely unambiguous.

3.1.3 (Windows) Keeping your WSL Linux Distribution Up to Date
The Ubuntu 20.04 you installed from the Microsoft store is a stable release version, but individual

components of the operating system are constantly being upgraded, sometimes to fix security issues.
You should get in the habit of keeping your Ubuntu up to date. This is done using apt in superuser
mode:

$ sudo apt upgrade
[sudo] password for <username >:
Reading package lists ... Done
Building dependency tree
Reading state information ... Done
Calculating upgrade ... Done
0 upgraded , 0 newly installed , 0 to remove and 0 not upgraded.

(In this case, I’m not showing any updates since mine is up to date.) Performing this check once a
week is a good idea; the default login message you see when you launch a WSL/Ubuntu terminal also
informs you when updates are available.

14

3 LINUX AND SCIENTIFIC COMPUTING

apt is Ubuntu’s “package manager” program, and it maintains a database of all packages installed
and which ones are upgradable. To do this, it connects periodically to remote repositories (hosted by
Ubuntu) in which updated packages are published. You can learn a lot about apt by looking at its
manual pages using the man command:

$ man apt

3.1.4 Working Remotely
Although you will likely not need to do this in this course, a key concept in scientific computing using

Linux is the ability to remote in to other computers. This is very easy using the command-line, and is
normally done using the “secure shell” protocol’s ssh command:

$ ssh <username >@hostname.domain.edu

Here, hostname.domain.edu is the fully resolved name of a remote computer on which <username>
has login privilege. The next thing one normally needs to do is provide a password (and, if necessary,
some kind of two-factor authentication, like a one-time code or responding to a push notification on your
phone). Typically, once you are logged in you have a command-line interface just like you do locally.
Typical workflows for remote work involve uploading data and input files for simulation runs, running the
simulations, and then downloading output data back to a local machine.

Often, the “other computers” are actually login nodes that front enormous clusters of “compute
nodes”. In these settings, execution of simulations is actually scheduled using a batch scheduler, and
“running a simulation” actually amounts to submitting the commands necessary to run the simulation to
the scheduler. The job of the scheduler is to decide when to run your program based on the availability
of system resources. This kind of “batch” processing is typical of high-performance computing. If you
are provided an account on a cluster, you will be trained on how to submit jobs to the scheduler (among
other things), and a basic working knowledge of Linux is typically assumed for this kind of training.

Many universities maintain their own HPC facilities. Drexel’s University Research Computing Facility
(URCF) has two main clusters: proteus.urcf.drexel.edu and picotte.urcf.drexel.edu.

3.2 Running Programs at the Command-Line
This is covered in Assignment 1, and I just go over basics here.

3.2.1 Programs that are Compiled: C
Programs written in C or FORTRAN or some other languages must be compiled to generate exe-

cutable programs. Most programs we will work with are in C, and the default compiler for C in Linux is
gcc. I’ll demonstrate a typical workflow for writing, compiling, and running a C program here.

First, cd to your cheT580 subdirectory, and create and cd into a subdirectory called examples, then
launch VSCode:

$ cd
$ cd cheT580
$ mkdir examples
$ cd examples
$ code .

15

3 LINUX AND SCIENTIFIC COMPUTING

You should see the code window appear something like this:

Using the explorer panel, I can click on the new file icon and create a new file called hello_pi.c:

Now, let’s create a little C program:

Notice that two libraries are included: stdio and math. I need stdio to use the printf() function, and
I need math to access the constant M_PI.

Saving that with Ctrl-S, I can now launch a new Terminal inside VSCode (or just go back to the WSL
terminal), and compile and run:

16

3 LINUX AND SCIENTIFIC COMPUTING

The compile command is gcc and its main argument is the name of the C program hello_pi.c.
The -o switch is used to identify the name of the output of the compilation; here, that is the name of
the executable, and we’re choosing to call that hello_pi. If we do not include a -o switch, gcc calls
the ouput a.out. The -lm switch instructs gcc to include the precompiled standard math library; try
omitting this switch and see what happens.

The executable hello_pi lives in the same directory as the source code hello_pi.c. We can run
it by just typing the name of the executable, prepended with ./. This instructs the shell NOT to go
looking in any standard system directories for the name of the command (which it normally does), but
instead to run the command whose executable is found in the current directory. The current directory is
always signified by ./. Running this program provides the anticipated result.

3.2.2 Programs that are Interpreted: Python
Unlike C, Python is an interpreted programming language. This just means that you don’t have

to compile it yourself before running it. Instead, you feed the program to the Python intepreter and it
compiles and runs it for you, and then exits.

Keeping that instance of VSCode running inside the examples subdirectory, let’s create a new file
called hello_pi.py:

In red, I’ve circled the little message indicating which Python interpreter VSCode will use if you
choose to run this program using VSCode. You may instead see a message here indicating that
you have to select a Python interpreter. (Windows users: If you did not install Python inside your
WSL/Ubuntu already, as instructed in Assignment 1, you can do so now using apt at the command-

17

3 LINUX AND SCIENTIFIC COMPUTING

line.)
Here is Python that does exactly the same thing as hello_pi.c:

Now, notice that little green “play” button in the upper-right? I can just click that to run the Python
program:

And we still get the anticipated result. We need not run the Python program inside VSCode; we are
free to run it at the command-line, but notice the command that VSCode issued to run the program:
the program that VSCode runs is actually the interpreter /bin/python3, and the argument of that
command is the full pathname of the Python script. You could alternatively issue that command at the
bash prompt and the same result would happen.

18

4 MONTE CARLO SIMULATION

4 Monte Carlo Simulation
The first simulation technique we will study is the Monte Carlo method. The primary “flavor” of

MC most appropriate for this introductory level course is the original Metropolis method, explained in
Sec. 4.1.

We will also use MC to explain basic technical aspects of molecular simulation code in Sec. 4.3.
These aspects are not all restricted to MC, but following the text, we will introduce and discuss these
technical aspects here. These include (1) periodic boundary conditions, (2) energy evaluation, (3)
representation of data, among others.

Finally, four case studies will be presented and investigated. The first is the Ising magnet (Sec. 4.2).
The second considers hard-disks confined in a circle (Sec. 4.4), and the third is hard-disk-dumbbells
(Sec. 4.5). The fourth is MC to explore the equation of state of a model liquid known as the Lennard-
Jones fluid (Sec. 4.6).

4.1 The Metropolis Monte Carlo Method
Monte Carlo is a type of numerical integration. Consider the following integral:

I =

∫ b

a
f (x) dx (62)

Now imagine that we have a second function, ρ(x), which is positive in the interval [a, b]. We can also
express I as

I =

∫ b

a

f (x)

ρ (x)
ρ (x) dx (63)

If we think of ρ (x) as a probability density, then what we have just expressed is the expectation value
of the quantity f/ρ on ρ in the interval [a, b]:

I =

〈
f (x)

ρ (x)

〉
ρ

(64)

This implies that we can approximate I by picking M values {xi} randomly out of the probability distri-
bution ρ(x) and computing the following sum:

I ≈ 1

M

M∑
i=1

f (xi)

ρ (xi)
(65)

Note that this approximates the mean of f/ρ as long as we pick a large enough number of random
numbers (M is large enough) such that we “densely” cover the interval [a, b]. If ρ (x) is uniform on
[a, b],

ρ (x) =
1

b− a
, a < x < b (66)

and therefore,

I ≈ a− b
M

M∑
i=1

f (xi) (67)

The next question is, how good an approximation is this, compared with other one-dimensional
numerical integration techniques, such as Simpson’s rule and quadrature? A better phrasing of this
question is, how expensive is this technique for a given level of accuracy, compared to traditional tech-

19

4 MONTE CARLO SIMULATION

niques? Consider this means to compute π:

I =

∫ 1

0

(
1− x2

)1/2
dx =

π

4
(68)

Allen and Tildesley [2] mention that, in order use Eq. 67 to compute π to an accuracy of one part in
106 requires M = 107 random values of xi, whereas Simpson’s rule requires three orders of magnitude
fewer points to discretize the interval to obtain an accuracy of one part in 107 (Fig. 2). So the answer
is, integral estimation using Monte Carlo estimation with uniform random variates is expensive.

Figure 2: Integration of Eq. 68 by Monte Carlo and Simpson’s rule. Upper: 4I vs number of random points for
MC, for which points are uniform random variates on [0,1], and for Simpson’s rule, for which points are equally
spaced along [0,1]. Lower: Squared error in the estimate of π for each method.

But, the situation changes radically when the dimensionality of the integral is large, as is the case
for an ensemble average. For example, for a system of 100 particles comprising 300 coordinates, the
configurational average 〈G〉 (Eq. 59) could be discretized using Simpson’s rule. If we did that, request-
ing only a modest 10 discrete points per axis in configurational space, we would need to evaluate the
integrand Ge−βU 10300 times. This is an almost unimaginably large number. Using a direct numerical
technique to compute statistical mechanical averages is simply out of the question.

We therefore return to the idea of evaluating the integrand at a discrete set of points selected
randomly from a distribution. Here we call upon the idea of importance sampling. Let us try to use
whatever we know ahead of time about the integrand in picking our random distribution, ρ, such that we
minimize the number of points (i.e., the expense) necessary to give an estimate of 〈G〉 to a given level
of accuracy.

Now, clearly the states that contribute the most to the integrals we wish to evaluate by configurational
averaging are those states with large Boltzmann factors; that is, those states for which ρNV T is large. It
stands to reason that if we randomly select points from ρNV T , we will do a pretty good job approximating

20

4 MONTE CARLO SIMULATION

the integral. So what we end up computing is the “average of GρNV T over ρNV T ”:

〈GρNV T /ρNV T 〉 ≈ 〈G〉 , (69)

which should give an excellent approximation for 〈G〉. The idea of using ρNV T as the sampling distri-
bution is due to Metropolis et al. [3]. This makes the real work in computing 〈G〉 generating states that
randomly sample ρNV T .

Metropolis et al. [3] showed that an efficient way to do this involves generating a Markov chain of
states which is constructed such that its limiting distribution is ρNV T . A Markov chain is just a sequence
of trials, where (i) each trial outcome is a member of a finite set and (ii) every trial outcome depends only
on the outcome that immediately precedes it. By “limiting distribution,” we mean that the trial acceptance
probabilities are tuned such that the probability of observing the Markov chain atop a particular state is
defined by some equilibrium probability distribution, ρ. For the following discussion, it will be convenient
to denote a particular state n using Γn, instead of ν.

A trial is some perturbation (usually small) of the coordinates specifying a state. For example, in an
Ising system, this might mean flipping a randomly selected spin. In a system of particles in continuous
space, it might mean displacing a randomly selected particle by a small amount δr in a randomly chosen
direction (θ, φ). There can be a large variety of such “trial moves” for any particular system.

The probability that a trial move results in a successful transition from state n to m is denoted πnm
and π is called the “transition matrix.” It must be specified ahead of time to execute a traditional Markov
chain. Since the probability that a trial results in a successful transition to any state, the rows of π add
to unity: ∑

i

πni = 1 (70)

With this specification, we term π a “stochastic” matrix. Furthermore, for an equilibrium ensemble
of states in state space, we require that transitions from state to state do not alter state weights as
determined by the limiting distribution. So the weight of state n:

ρn ≡ ρNV T (Γn) (71)

must be the result of transitions from all other states to state n:

ρn =
∑
m

ρmπmn. (72)

For all states n, we can write Eq. 72 as a post-op matrix equation:

ρπ = ρ (73)

where ρ is the row vector of all state weights. Eq. 73 constrains our choice of π. This means there is
still more than one way to specify ρ. Metropolis et al. [3] suggested:

ρmπmn = ρnπnm (74)

That is, the probability of transitioning from statem to n is exactly equal to the probability of transitioning
from state n tom. This is called the “detailed balance” condition, and it guarantees that the state weights
remain static. Observe:

∑
m

ρmπmn =
∑
m

(ρnπnm) = ρn

(∑
m

πnm

)
= ρn (75)

21

4 MONTE CARLO SIMULATION

Detailed balance is, however, overly restrictive; is the only the conceptually simplest way to guarantee
that a limiting distribution is obtained. This fact is of little importance in this course, but you may
encounter other balance-enforcing conditions in the literature.

Metropolis et al. [3] chose to construct π as

πnm = αnmacc (n→ m) (76)

where α is the probability that a trial move is attempted, and acc is the probability that a move is
accepted. If the probability of proposing a move from n to m is equal to that of proposing a move from
m to n, then αnm = αmn, and the detailed balance condition is written:

ρnacc (n→ m) = ρmacc (m→ n) (77)

from which follows
acc (n→ m)

acc (m→ n)
=
ρm
ρn

=
e−βU(Γm)

e−βU(Γn)
(78)

giving
acc (n→ m)

acc (m→ n)
= exp {−β [U (Γm)− U (Γn)]} ≡ exp (−β∆Unm) (79)

where we have defined the change in potential energy as

∆Unm = U (Γm)− U (Γn) (80)

There are many choices for acc (n→ m) that satisfy Eq. 79. The original choice of Metropolis is
used most frequently:

acc (n→ m) =

{
exp (−β∆Unm) ∆Unm > 0
1 ∆Unm < 0

(81)

So, suppose we have some initial configuration n with potential energy Un. We make a trial move,
temporarily generating a new configuration m. Now we calculate a new energy, Um. If this energy is
lower than the original, (Um < Un) we unconditionally accept the move, and configuration m becomes
the current configuration. If it is greater than the original, (Um > Un) we accept it with a probability
consistent with the fact that the states both belong to a canonical ensemble. How does one in practice
decide whether to accept the move? One first picks a uniform random variate x on the interval [0, 1]. If
x ≤ acc (n→ m), the move is accepted.

The next section is devoted to an implementation of the Metropolis Monte Carlo method for a 2D
Ising magnet.

4.2 Case Study 1: The 2D Ising Magnet
4.2.1 Introduction

In the introductory lecture, I introduced state-counting using a simple, one-dimensional Ising sys-
tem. To be precise, this was a particular case known as an Ising magnet of noninteracting spins,
because each spin made its own independent contribution to the Hamiltonian. The state of the magnet
is specified by specifying each spin variable as either +1 or -1:

Γ = {s1 = ±1, s2 = ±1, s3 = ±1, . . . , sN = ±1} (82)

Now, we will consider a more interesting Ising system; namely, that of interacting spins on a 2d
square lattice. What do we mean by interacting? We mean that the Hamiltonian depends on pairs of

22

4 MONTE CARLO SIMULATION

spins:
H = −J

∑
〈ij〉

sisj (83)

where the notation 〈ij〉 denotes that we are summing over unique pairs of nearest neighbors, and, as
before a spin si is either +1 or -1. J is the “coupling constant” and represents our default unit of energy.
How many unique pairs of nearest neighbors are there on a lattice of N spins (assuming periodic
boundary conditions)? To answer this question, we must know the coordination, z, of the lattice; that
is, how many nearest neighbors does one lattice position have? For a square lattice, z = 4. Each spin
therefore contributes two unique spin pairs to the system, so there are Nz/2 unique nearest neighbor
pairs.

Think about this Hamiltonian. It says that energy is minimal when all N spins have the same
alignment, either all up or all down. Imagine a microscopic observable called the magnetization, or
average spin orientation, M :

M ≡ 1

N

N∑
i

si (84)

Then, M = +1 and -1 are two energetically equivalent microstates. We can then expect that if there is
any thermal energy in the system which randomly flips spins, the amount of this thermal energy (that is,
the temerature) will somehow control the observable magnetization. We “observe” magnetization using
an ensemble average:

〈M〉 =

+1∑
s1=−1

· · ·
+1∑

sN=−1

[
N∑
i

si

]
exp [−βH (s1, . . . , sN)]

+1∑
s1=−1

· · ·
+1∑

sN=−1

exp [−βH (s1, . . . , sN)]

(85)

Our physical intuition tells us that as T → 0, |〈M〉| → 1, and as T → ∞, 〈M〉 → 0. The fascinating
thing about an Ising magnet is that there is a finite temperature called the critical temperature, Tc. If we
start out with a “hot” system, and cool it to just below Tc, the absolute value of the magnetization spon-
taneously jumps from 0 to some finite value. In other words, the system undergoes a phase transition
from a disordered phase to a partially ordered phase. A Metropolis Monte Carlo simulation can allow
us to probe the behavior of an Ising system and learn how the system behaves near criticality. The rest
of this case study will be devoted to showing you the inner workings of a C program which simulates
the Ising magnet using Metropolis MC, as a first implementation of this technique. In the suggested ex-
ercises appearing at the end of this case study, you will modify this code slightly to compute averages
values of certain observables.

But first, I recommend you check out this Java implementation of a Monte Carlo simulation of a
2-dimensional Ising magnet (one of many on the web; google “ising simulation” and you’ll get a nice
sample.) This is a fun little Java applet that lets you play with an Ising magnet. You can change the
temperature of the simulation: making it cold will “freeze” the system, and making it hot “melts” it. Near
the critical temperature, Tc, relatively large regions of mostly-up spins compete with regions of mostly
down spin. In one of the exercises, we’ll learn how to measure an observable called the correlation
length, which characterizes the size of these domains and is a useful signature of criticality.

4.2.2 A C Code for the 2D Ising Magnet
In this section, we will dissect piece-by-piece a small C program that implements an NVT Metropolis

Monte Carlo simulation of a 2D Ising magnet.

23

https://mattbierbaum.github.io/ising.js

4 MONTE CARLO SIMULATION

If you have not already done so, clone the Abrams-Teaching/instructional-codes repository from
Github. This repository will be updated throughout the term with source code in the originals sub-
directory. You should create a subdirectory called my_work inside this repository and do all editing,
compiling, and running in there. This directory is specifically excluded from git revision control by its
inclusion in the .gitignore file. This way, when I put new codes in the repository, you only have to
git pull to download them.

$ cd
$ cd cheT580
$ git clone git@github.com:Abrams -Teaching/instructional -codes.git
$ cd instructional -codes
$ mkdir my_work
$ cd my_work
$ cp ../ originals/ising_mc.c .
$ code .

From a terminal command-line inside VSCode, or outside, you can compile ising_mc.c via

$ gcc -O3 -o ising ising_mc.c -lm -lgsl

and you can then run it at the command line as ./ising. It has a lot of options for controlling the size
of the magnet (the number of spins), the temperature, and other parameters, which I’ll go over now.

ising_mc.c conducts a canoncial Metropolis Monte Carlo simulation of an Ising magnet of size
L× L at temperature T (both specified by the user at run time on the command line), and it computes
both the average energy per spin 〈ε〉 and the average spin value, 〈s1〉.

Periodic boundaries are employed in calculating the nearest-neighbor interactions. Consider an
L × L magnet; each row i indexed from 0 to N − 1 has L columns also indexed from 0 to N − 1. If
the cell at (5,5) queries its neighbors, they are at (4,5), (6,5), (5,4), and (5,6). However, the cell at (0,5)
would have a southern neighbor at (N − 1,5) instead of (-1,5), since there is no row indexed -1! Fig. 3
demonstrates this.

An abbreviated listing of the code follows. Some comments in the full, downloadable code have
been omitted for space, and I have instead explained each code fragment in accompanying text.

Headers
These are some standard headers we include in most C programs, along with the GNU scientific

library.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_rng.h>

The Change in Energy upon a Proposed Spin Flip
dE() is function that accepts as arguments the 2D array of spins, M; the side-length, L, and a position

(i, j), and returns the change in energy (in units of J) upon flipping spin (i, j), without actually flipping it.
All variables are of integer type, int. The syntax ** M means that M is a pointer to a pointer to an int,
signifying that M is a 2D array. To access element in row i and column j in M, the syntax is M[i][j].
In C, all array indices start at 0, so M[0][0] refers to the “upper-left” corner of the magnet (assuming
row numbers increase going down the magnet). The inline conditional syntax i?(i-1):(L-1) expands
as, “If i is non-zero, return i-1; otherwise, return L-1.” This implements periodic boundaries when

24

4 MONTE CARLO SIMULATION

Figure 3: Schematic Ising magnet highlighting periodic boundary conditions. The neighbors of the red spin
can be found by adding or subtracting one from the cell’s row and column index. For the green and blue cells,
however, at least one of the neighbors appears on the other side of the magnet.

looking to the west of spin M[i][j]. The syntax (i+1)\%L returns computes (i + 1) mod L, which
also implements periodic boundaries when looking to the east of spin M[i][j].

int dE (int ** M, int L, int i, int j) {
return -2*(M[i][j])*(M[i?(i-1):(L-1)][j]+M[(i+1)%L][j]+

M[i][j?(j-1):(L-1)]+M[i][(j+1)%L]);
}

Initialize all Spin Values
The function init() visits every spin and assigns it either +1 or -1 randomly.

void init (int ** M, int L, gsl_rng * r) {
int i,j;
for (i=0;i<L;i++) {

for (j=0;j<L;j++) {
M[i][j]=2*(int)gsl_rng_uniform_int(r,2)-1;

}
}

}

Main Program: Variable Declarations
In C functions, including main(), all variables must be declared by type before they are used. Often,

it makes sense to initialize them to some default values upon declaration. Here, we make the default

25

4 MONTE CARLO SIMULATION

magnet 20×20 in size, set the temperature to 1 (in dimensions of J/kB), and provide some defaults fo
the number of cycles (106) and sampling interval (103) in cycles (a cycle is one round of N attempted
flips). Variables for holding a couple of observables are initialized. Finally, the pseudorandom number
generator from the GSL is declared.

int main (int argc , char * argv []) {
/* System parameters */
int ** M; /* The 2D array of spins */
int L = 20; /* The sidelength of the array */
int N; /* The total number of spins = L*L */
double T = 1.0; /* Dimensionless temperature = (T*k)/J */

/* Run parameters */
int nCycles = 1000000; /* number of MC cycles to run;

one cycle is N consecutive attempted
spin flips */

int fSamp = 1000; /* Interval between taking samples */

/* Computational variables */
int nSamp; /* Number of samples taken */
int de; /* energy change due to flipping a spin */
double b; /* Boltzman factor */
double x; /* random number */
int i,j,a,c; /* loop counters */

/* Observables */
double s=0.0, ssum =0.0; /* average magnetization */
double e=0.0, esum =0.0; /* average energy per spin */

/* Pseudorandom Number Generator */
gsl_rng * r = gsl_rng_alloc(gsl_rng_mt19937);
unsigned long int Seed = 23410981;

Main Program: Argument Parsing
Here, we parse the command line arguments. The user running the program can specify the magnet

side-length L, the temperature (in units of J/kB), the number of cycles, the sampling interval, and the
seed value for the pseudorandom number generator. The array argv[] and its count of elements argc
appear as parameters in the definition of main, as is customary in C. The built-in function strcmp()
returns 0 if the two arguments match, so the logical expression !strcmp(a,b) evaluates to TRUE if
strings a and b match. The built-in functions atoi() and atof() convert their string arguments to
integers and floating-points, respectively. The notation argv[++i] means that first the current value of
i is incremented by 1 and then it is used to access the value in argv[]. So, for example, if the string
"-L" is detected at the ith position in the array of command-line arguments, the code immediately
jumps to the next position in the array and tries to intepret that argument as an integer to assign to L.

for (i=1;i<argc;i++) {
if (! strcmp(argv[i],"-L")) L=atoi(argv [++i]);
else if (! strcmp(argv[i],"-T")) T=atof(argv [++i]);
else if (! strcmp(argv[i],"-nc")) nCycles = atoi(argv [++i]);

26

4 MONTE CARLO SIMULATION

else if (! strcmp(argv[i],"-fs")) fSamp = atoi(argv [++i]);
else if (! strcmp(argv[i],"-s")) {

Seed = (unsigned long)atoi(argv [++i]);
}

}

Main Program: Initial Outputs
Next, we echo the command entered back to the terminal, and then output any parsed variables

values.

printf("# command: ");
for (i=0;i<argc;i++) printf("%s ",argv[i]);
printf("\n");
printf("# ISING simulation , NVT Metropolis Monte Carlo\n");
printf("# L = %i, T = %.3lf, nCycles %i, fSamp %i, Seed %lu\n",

L,T,nCycles ,fSamp ,Seed);

Main Program: Initialization
Next, we initialize the pseudorandom number generator r by setting the seed value using Seed

. Then the number of spins N is computed assuming a square magnet. We then allocate memory
needed to hold the magnet; this is a standard method of allocating a 2D array of integers. Next we call
our init() function, and finally we convert T to 1/T since multiplication is more efficient than division.

/* Seed the random number generator */
gsl_rng_set(r,Seed);

/* Compute the number of spins */
N=L*L;

/* Allocate memory for the system */
M=(int**) malloc(L*sizeof(int *));
for (i=0;i<L;i++) M[i]=(int*) malloc(L*sizeof(int));

/* Generate an initial state */
init(M,L,r);

/* For computational efficiency , convert T to reciprocal T */
T=1.0/T;

Main Program: Monte Carlo Loop
And now the loop. Note the outer loop counts cycles, and the inner loops counts flip attempts in one

cycle. The variables i and j are randomly assigned between 0 and L-1, identifying a random spin. This
random spin is tagged and sent to our dE() function to calculate the change in energy we would expect
if that spin were flipped (+1→-1 or -1→+1). We then calculate the Boltzmann factor in b, and then use
the Metropolis criterion to decide whether to accept or reject this spin flip: choosing a random variable
on [0,1] and accepting the move if the Boltzmann factor is greater than this number. If it is accepted, we
actually peform the flip by multiplying the spin value by -1. Finally, if the current cycle is one in which
we collect a sample, we do so by calling the samp() function. The logical expression !(c\%fSamp)

27

4 MONTE CARLO SIMULATION

evaluates to TRUE if the cycle counter c is divisible by fSamp. In the call to samp(), the arguments s
and e are passed by reference, signified by the & qualifier. This is necessary because inside samp()
we modify both variables. Each of s and e are added to their respective tallies, ssum and esum, and the
number of samples taken nSamp is incremented by 1.

s = 0.0;
e = 0.0;
nSamp = 0;
for (c=0;c<nCycles;c++) {

/* Make N flip attempts */
for (a=0;a<N;a++) {

/* randomly select a spin */
i=(int)gsl_rng_uniform_int(r,L);
j=(int)gsl_rng_uniform_int(r,L);
/* get the "new" energy as the incremental change due

to flipping spin (i,j) */
de = dE(M,L,i,j);
/* compute the Boltzmann factor; recall T is now

reciprocal temperature */
b = exp(de*T);
/* pick a random number between 0 and 1 */
x = gsl_rng_uniform(r);
/* accept or reject this flip */
if (x<b) { /* accept */

/* flip it */
M[i][j]*=-1;

}
}
/* Sample and accumulate averages */
if (!(c%fSamp)) {

samp(M,L,&s,&e);
fprintf(stdout ,"%i %.5le %.5le\n",c,s,e);
fflush(stdout);
ssum+=s;
esum+=e;
nSamp ++;

}
}

Main Program: Final Outputs and Program Termination
After the outer loop finishes, we can finish up by reporting the averages 〈s1〉 from the tallies of s

and e.

fprintf(stdout ,"# The average magnetization is %.5lf\n",
ssum/nSamp);

fprintf(stdout ,"# The average energy per spin is %.5lf\n",
esum/nSamp);

fprintf(stdout ,"# Program ends.\n");
}

28

4 MONTE CARLO SIMULATION

Figure 4: (Upper) Average magnetization 〈s1〉 and (lower) average energy per spin 〈e〉 vs. temperature for
a 40×40 Ising lattice, computed using six independent 50,000-cycle Metropolis MC simulations with sampling
intervals of 100 cycles.

4.2.3 Example: Average Energy and Magnetization vs. Temperature
Let’s run the code for an L=40 lattice for the following values of temperature: 5.0, 4.0, 3.0, 2.0, 1.0.

At each temperature, we’ll run six separate simulations with a unique random number generator seed.
Fig. 4 shows the average magnetization 〈s1〉 and the average energy per spin 〈e〉 vs. temperature, with
each simulation contributing a unique point.

What is happening here? Clearly, as the temperature decreases, the average energy per spin
approaches -2; this makes sense because the spins will tend to align with their neighbors. However,
when we look at the average magnetization, we see that 〈s1〉 is zero at high temperatures but then
can seemingly approach either +1 or -1 as the temperature goes down. This is because of symmetry
breaking: although either all-up or all-down is equally likely, once it falls toward one it won’t ever climb
back out and go to the other. So we see some magnets go to all -1 and others to all +1.

Symmetry-breaking is an important phenomenon in molecular simulations. The impact is has is to
prevent exploration of state space because of barriers that are only extremely rarely overcome when
resolving state-to-state transitions microscopically. In the low-T Ising magnet, the all-up and all-down
states are equally likely, but once one is committed to, the other will never practically be explored.
Why is this significant? Many systems have state spaces like this, where there are two or more high-
probability regions separated by large regions of low probability. Sampling based on local moves in

29

4 MONTE CARLO SIMULATION

state space can almost never overcome such barriers, meaning such simulations are likely never truly
ergodic. None of the MC simulations below about T = 2.2 for an Ising simulation are ergodic!

4.2.4 Suggested Exercises
1. Modify the code so that when samples are taken in accumulating statistics for 〈s1〉 and 〈ε〉, the

current sample values are output to the terminal. You’ll want to find the right place to add the
following line: fprintf(stdout,"%i %.5lf %.5lf\n",c,s,e);

2. The current version of the code initializes the Ising lattice with random spins. What temperature
does this correspond to? Modify the code so that the initial lattice has two well-defined domains,
all spin-up for i < L/2 and all spin-down for i > L/2. Re-run at the various temperatures. Do
you see any differences?

3. (Advanced) Modify the code ising.c to compute the quantity 〈sisj〉 − 〈si〉 〈sj〉 as a function of
various distances between spins i and j.

30

4 MONTE CARLO SIMULATION

4.3 Elements of a Continuous-Space MC program
The Ising system serves us well as a simple introduction to the technique of Monte Carlo simulation.

Now, we move on to the more advanced case of continuous-space Monte Carlo; that is, Monte Carlo on
a system composed of particles whose position and velocity vector components are real numbers. We
will first consider the simple case of a “hard-sphere” liquid, and then the more realistic Lennard-Jones
liquid. These distinctions have to do with the potential energy function used to compute the potential
energy U of a configuration rN .

Regardless of the potential used, all continuous-space MC programs have common elements:
1. data representation and input/output;
2. energy calculation;
3. trial move generation.

4.3.1 Data Representation and Input/Output
The information that must be stored and handled in an MC program are the particle positions. In

3D space, each particle has three components of its position. The simplest way to represent this
information in a program is by using parallel arrays; that is, three arrays, dimensioned from 1 to N , one
for each dimension. In C, we might declare these arrays for 1,000 particles as

int N = 1000;
double rx[N], ry[N], rz[N];

This data can be stored in standard ASCII text files, or in unformatted binary files. In fact, a large part
of most molecular simulation is producing and storing configurations which can be processed “offline”
(away from the simulation program) to perform analyses. A simple and widely used ASCII configuration
file format is called “XYZ”. A code fragment to write a configuration of N hydrogen atoms in XYZ format
appears below:

FILE * fp;
...
fp = fopen("my_config.xyz","w");
fprintf(fp,"%i\n",N);
fprintf(fp,"This is a comment or just a blank line\n");
for (i=0;i<N;i++)

fprintf(fp,"%s %.8le %.8le %.8le\n","H",rx[i],ry[i],rz[i]);

The main feature of XYZ files is that one can specify the element type of each atom; for simple
visualization purposes of our toy systems, this can be anything, so we’ll just use H for now.

It’s quite easy to read ASCII data in that was written in XYZ format, e.g., using the fragment above,
ignoring the element types (for now):

FILE * fp;
int N;
double * rx, * ry, * rz;
char dummy [4];
...
fp = fopen("my_config.xyz","r");
fscanf(fp,"%i\n",&N);
/* allocate if not done already */
rx=(int*) malloc(N*sizeof(int));
ry=(int*) malloc(N*sizeof(int));
rz=(int*) malloc(N*sizeof(int));

31

4 MONTE CARLO SIMULATION

fscanf(fp,"\n"); /* reads the comment line but throws it away */
for (i=0;i<N;i++)

fscanf(fp,"%s %.8le %.8le %.8le\n",dummy ,&rx[i],&ry[i],&rz[i]);

4.3.2 Analytical Potentials
The total system potential energy is most often computed by means of analytical potentials. Such

a potential energy can be written as a continuous function of the positions of particle centers-of-mass.
(Such potentials are often termed “empirical” when applied to atomic systems because they formally
neglect quantum mechanics.) In most molecular simulations, the total system potential can be decom-
posed in the following way:

U
(
rN
)

= U0 +
∑
i

U1(ri) +
∑
i<j

U2(ri, rj) +
∑
i<j<k

U3(ri, rj , rk) + · · ·+ UN (ri, rj , . . . , rN), (86)

Here, U0 is some reference potential. U1 is a “one-body” potential, U2 is a “two-body” potential, etc.
This generally defines a “many-body” potential, and is the heart of the “many-body” problem of statistical
physics. Namely, the Boltzmann factor e−βU correlates every position with every other position, and the
configurational integral (Eq. 59) is not factorizable into many separate easily evaluated integrals.

Analytical potentials are most easily understood by considering model systems which are decom-
posable into spherically-symmetric, pairwise interactions. Consider then the following total system po-
tential energy:

U =
N∑
i=1

N∑
j=i+1

Uij (rij) (87)

The double-sum runs over all unique pairs of particles. The function Uij (rij) is called a pair potential,
and it is a function of the scalar distance between particle i and j.

The simplest pair potential is the “hard-sphere”:

UHS (r) =

{
∞ r < σ
0 r > σ

(88)

Here, σ is an arbitrary interaction range that denotes the “size” of the spheres. When the distance
between two spheres is less than σ, the energy is infinite; otherwise it is 0. This is the simplest way to
enforce excluded volume among spherical particles in an MC simulation. We will see an implementation
of a hard-sphere liquid in the next section.

The most celebrated pair potential is the Lennard-Jones potential (Fig. 5):

ULJ (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(89)

ε is the unit of energy, and is the well-depth of the pair potential (that is, it is the minimum value of the
potential). σ is the unit of length, and is the separation distance when the potential is identically zero.
Unlike the hard-sphere potential (Eq. 88), the Lennard-Jones potential is “smooth” (it has a continuous
first derivative). This smoothness makes it useful in Molecular Dynamics simulations, as we will see
later in the course.

We will encounter more complex potentials than Lennard-Jones, but it serves as a useful tool for
introductory molecular simulation.

Reduced Units. Because the Lennard-Jones potential is so prevalent in molecular simulations, it
is essential that we understand the unit system most often chosen for simulations using this potential.

32

4 MONTE CARLO SIMULATION

-1

 0

 1

 2

 3

 4

 0 1 2 3 4 5

U
L

J
 (

ε
)

r (σ)

Figure 5: The Lennard-Jones pair potential.

For computational simplicity, energy in a Lennard-Jones system is measured in units of ε and length in
σ. This means that everywhere in the code you would expect to see ε or σ, you find a 1 (often implied).

Now, to compute the total potential U for a system of particles, the simplest algorithm is to loop over
all unique pairs of particles. Here is a simple pair search C function (the so-calledN2 algorithm because
its complexity scales like N2) to compute the total energy of a system of Lennard-Jones particles, in
reduced units:

double total_e (double * rx, double * ry, double * rz, int n) {
int i,j;
double dx, dy, dz, r2, r6 , r12;
double e = 0.0;
for (i=0;i<(n-1);i++) {

for (j=i+1;j<n;j++) {
dx = rx[i]-rx[j];
dy = ry[i]-ry[j];
dz = rz[i]-rz[j];
r2 = dx*dx + dy*dy + dz*dz;
r6 = r2*r2*r2;
r12 = r6*r6;
e += 4*(1.0/ r12 - 1.0/r6);

}
}
return e;

}

Although it is strictly correct, the N2 pair search algorithm is inefficient if there is a finite interaction
range in the pair potential. Typically in dense liquid simulations, a Lennard-Jones pair potential is
truncated at r = 2.5 σ. There are some potentials that are cut off at even shorter distances. The point
is that, when the maximum interaction distance is finite, each particle has a finite maximum number of
interaction partners. (This assumes number density is bounded, which is a reasonable assumption.)
More advanced techniques (which we discuss later) can be invoked to make the pair search much more

33

4 MONTE CARLO SIMULATION

efficient in this case. The two most common are (1) the Verlet list, and (2) the link-cell list. For now, and
to keep the presentation simple, we will stick to the inefficient, brute-force N2 algorithm.

4.3.3 Trial Moves
Particle Displacement. The most common trial move in continuous-space MC is a particle displace-

ment. First, a small number ∆R, representing a maximum displacement, is set. A trial move consists
of

1. Randomly select a particle, i.
2. Displace x-position coordinate of particle i by a random amount, δx, which is given by

δx = ∆Rξx (90)

where ξx is a uniform random variate on the interval [-0.5:0.5].
3. Repeat for the y and z coordinates, if applicable.
This move guarantees detailed balance, provided that the random particle selection is uniform;

for any given move, selection of all possible particles is equally likely. This means that probability of
suggesting a move that displaces a particle, going from a state n to a new state m, has the same
probability of selecting the same particle while in state m and giving it a displacement that will return
the configuration to state n. (Do you think such sequential moves ever actually happen?)

For a system of simple particles, random displacements are the only necessary trial moves; thus,
αnm is always unity. For more complicated systems, there are zoos of trial moves all over the literature.
We will consider some more complicated systems and trial moves later in the course; one that we
consider next is rigid rotation.

The question at this point is, how does one choose an appropriate value for ∆R? If ∆R is too
small, the system will not explore phase space given a reasonable amount of computational effort. If it
is too large, displacements will rarely result in new configurations which will be accepted in a Metropolis
MC scheme. So it takes a bit of trial and error to find a good value for ∆R, and the rule of thumb
is to set ∆R such that the average probability of accepting a new configuration during a run is about
30%. This is termed “tuning ∆R to achieve a 30% acceptance ratio.” We will go through the exercise of
determining such an appropriate value for ∆R for a simple continuous-space system; namely, 2D hard
disks confined to a circle.

Rigid rotation. A second common type of trial move is used in systems of more structured molecules
than just simple, single-center spheres. Consider a diatomic with a rigid bond length r0. Clearly,
attempting to move one of the two members of the diatomic by a random displacement is likely to
result in a new bond length with may be significantly different from r0. So, for a system of diatomics, a
reasonable set of trial moves would include

1. Small displacement of molecule center of mass; and
2. Small rotation around molecule center of mass.
With more than one kind of move, an attempt to generate a new state must be preceded by a

random selection of the trial move. We can weight each kind of move and then use a random number
to decide which move to attempt. For example, let’s say that we choose that 80% of all trial moves be
displacements, and the balance rotations (we will see later whether or not this is a good choice). Prior
to an attempted move, we select a uniform random variate, ξ, on the interval [0, 1]. If ξ < 0.8, which
it will be 80% of the time, we execute a displacement of a randomly chosen molecule; otherwise, we
execute a rotation of a randomly chosen molecule.

4.4 Case Study 2: MC of Hard Disks
Change directory into your instructional-codes repository and issue a pull if you don’t already

see hdisk.c there. This code simulates disks confined to a circle. The Hamiltonian for this system may

34

4 MONTE CARLO SIMULATION

be expressed as

H =
N∑
i=1

H1(ri) +
N∑
i=1

N∑
j=i+1

H2(ri, rj) (91)

where

H1(ri) =

{
0 ri < R
∞ ri > R

(92)

and

H2(ri, rj) =

 0
√

(ri − rj)
2 > σ

∞
√

(ri − rj)
2 < σ

(93)

H1 acts to keep the particles confined, and H2 prevents them from overlapping. One nice thing
about using hard-disk Hamiltonians is that there is never a reason to evaluate a Boltzmann factor. Any
trial move that results in an overlap or a particle crossing the boundary gives an “infinite” ∆U , so e−β∆U

is identically 0 and the trial is unconditionally rejected.
hdisk.c requires as user input any two of the following three parameters: R, the radius of the circle

in σ; ρ, the areal number density of particles (# per square σ); and N , the number of particles. The
user may also specify δr, the scalar displacement, and nc, the number of MC cycles, where one cycle
is N attempted particle displacements. Optionally, the code can generate configurational samples as
simple text files or as a single XYZ-formatted trajectory (which looks like a concatenation of XYZ files),
and in order to generate these samples, traj_samp must be set greater than zero. The code reports
the acceptance ratio, among other things:[

acceptance
ratio

]
=

[
number of successful trials

number of trials

]
One important aspect of any MC simulation code is how the particle positions are initialized. Here,

it is best to assign initial positions to the particles such that the initial energy is 0 (i.e., there are no
overlaps nor particles out of bounds.) Try to figure out how the function init() in the program hdisk.c
accomplishes this.

As a suggested further exercise, use hdisk.c to determine a reasonable displacement to achieve
a 30% acceptance ratio at a density of 0.5. Compare your results across differently sized systems and
runs with different numbers of cycles. For fewer than 106 cycles, you will have large acceptance ratios
because the initial condition is not yet fully destroyed.

Below is a plot of acceptance ratio vs. ∆R for densities ρ of 0.2, 0.4, 0.6, from a simulations of 200
particles. 2,000 cycles were performed for each run, and each had a unique seed. Are your results
consistent with this data?

One advantage of the XYZ format is that we can use VMD to visualize our configurations, and even
to make animations of our simulations. For example, suppose we generate a short 1,000-cycle MC
trajectory of the hard-disk system at ρ = 0.7 and N = 100:

$ cd
$ cd cheT580 -202035/ instructional -codes/my_work
$ mkdir hdisk_run
$ cd hdisk_run
$ gcc -O3 -o hdisk ../../ originals/hdisk.c -lm -lgsl
$./hdisk -xyz traj.xyz -traj_samp 1 -nc 1000 -rho 0.7 -N 100 -dr 0.5
R = 6.74336; rho = 0.70000; N = 100; seed = 23410981

35

4 MONTE CARLO SIMULATION

Figure 6: Acceptance ratio vs. ∆R for various densities in a 200-particle hard-disk system from 2,000-cycle MC
simulations.

Results:
Number of Trial Moves: 100000
Maximum Displacement Length: 0.50000
Acceptance Ratio: 0.48499
Reject Fraction Out -of-bounds: 0.09707
Reject Fraction Overlap: 0.90293
$ ls
hdisk traj.xyz

Notice I provide the name of the trajectory file, indicating I want one sample per cycle. I also set the
magnitude of the maximum displacement at 0.5 σ.

After the run finishes, the file traj.xyz appears. It looks like this:

$ head −10 t r a j . xyz
100
Generated by hdisk . c ; a l l z−components are zero ; a l l elements are H
H 2.48776 1.78242 0.00000
H 5.80283 0.16579 0.00000
H 2.57789 −4.28715 0.00000
H −4.25852 0.68353 0.00000
H −5.95301 2.69712 0.00000
H 0.28903 −1.04400 0.00000
H 1.86426 −0.93249 0.00000
H −4.16984 1.87756 0.00000

We can use VMD to visualize this trajectory. If you are on a Windows 10 machine and you installed
the Windows version of VMD, you can simply launch it from the start menu, and then navigate to

\\wsl$\<distro >\home\<username >\cheT580 -202035\ instructional -codes\my_work\hdisk_run\

and then just click on traj.xyz to read it in. If you are on a Mac, you should be able to navigate straight
to the file. In Fig. 7, I show three snapshots from this simulation, at cycle 0, 500, and 1000.

As another suggested exercise, consider generating a trial move in the following way:
1. Randomly select a particle i.

36

4 MONTE CARLO SIMULATION

Figure 7: Snapshots from a short hard-disk MC simulation at 0, 500, and 1,000 cycles. Images were rendered
in VMD in an orthographic view along [0,0,-1], and particles were rendered as “points” with size 27.

2. Randomly choose a direction. In 2D, this is an angle φ chosen uniformly from the interval [0, 2π].
In 3D, this is two angles θ and φ, where cos θ is chosen uniformly from the interval [−1, 1], and φ
is chosen uniformly from the interval [0, 2π].

3. Compute the displacement vector components. In 2D: dx = ∆R cos θ and dy = ∆R sin θ. In 3D:
dx = ∆R sin θ cosφ, dy = ∆R sin θ sinφ, dz = ∆R cos θ.

4. Execute the move by adding the displacement vector components to the position of particle i.
The main difference of this scheme with the first one is that, in 2D, only one random number must be
chosen per displacement attempt. Explore the acceptance ratio vs. ∆R relationship with this new trial
move. Does this scheme generate a 30% acceptance ratio for a higher or lower maximum displacement
that does the original scheme?

37

4 MONTE CARLO SIMULATION

4.5 Case Study 3: Hard-Disk Dumbbells in 2D
In this case study, we consider a slightly different system than the hard-disk system in the previous

case study. Here, we imagine that pairs of disks are tethered together to form dumbbells. The “bond-
length” of a dumbbell is a constant parameter, r0. We will again confine the dumbbells to a circle.

What is new is how we have to consider the trial moves for this system. We cannot simply select
a random particle and try to displace it, because this is likely to violate the constant bond-length of
the dumbbell that particle belongs to. How then do we generate new configurations? A simple idea is
to use two kinds of trial moves, translation of entire dumbbells and rotation of dumbbells around their
centers of mass. This was originally presented in Sec. 4.3.3. In order to implement an MC code with
more than one trial move, we must include a “trial move selection rule” which randomly selects a trial
move based on their user-defined “weights”.

The code hdisk-dumbbells.c implements a MC simulation of hard-disk dumbbells. One specifies
a number of particles using -N # at the command line, and the number of dimers is assumed to be
N /2. One can specify two of N , ρ (areal particle density), or R (confining domain diameter). One
can also specify δr (maximum dimer displacement distance) and δφ (maximum dimer rotation angle),
as well as the dimer bond length r0. An XYZ-format trajectory can be saved every -fs cycles using
-traj my_traj.xyz.

Let’s run this program forN = 200, ρ = 0.6, δr = 1, δφ = π, for 10,000 cycles, saving 1000 snapshots
in traj.xyz:

$ cd
$ cd cheT580 -202035/ instructional -codes/my_work
$ mkdir hddb_run
$ cd hddb_run
$ gcc -O3 -o hddb ../../ originals/hdisk -dumbbells.c -lm -lgsl
$./hddb -rho 0.6 -dr 1 -da 3.1 -dw 0.5 -N 200 -traj traj.xyz -fs 10 -nc 10000
R = 10.30; rho = 0.60; N = 200; r_0 = 1.00; s = 1.00; disp_wt = 0.50, seed = 23410981
Results:
Number of trial moves: 2000000
Maximum displacement length: 1.000
Number of displacement attempts: 999499
Maximum rotation angle (radians): 3.100
Number of rotation attempts: 1000501
Displacement acceptance ratio: 0.344
Rotation acceptance ratio: 0.405
Reject Fraction Out -of-bounds: 0.10037
Reject Fraction Overlap: 0.89963
Trajectory saved to: traj.xyz
$ ls
hddb traj.xyz

As with the hard disks, we can use VMD to visualize frames in this trajectory. Fig. 8 shows three
representative snapshots from this simulation, along with a special view showing the histories of four
particular dimers. This last rendering serves to indicate that dimers have mostly explored the entire
domain for this number of cycles (is this the case for 1,000 cycles?).

Consider the following question: Does the acceptance ratio of rotational moves depend upon the
weight given to displacement moves? Why or why not? Below is a plot of the acceptance ratio vs. the
maximum displacement for a system of 100 dumbbells at a density of 0.5, for various displacement
move weights between 0.1 and 0.9. As you can see, there appears to be no effect on the acceptance

38

4 MONTE CARLO SIMULATION

Figure 8: Snapshots from a short hard-disk-dumbbell MC simulation at 0, 5000, and 10,000 cycles. Images
were rendered in VMD in an orthographic view along [0,0,-1], and particles were rendered as “points” and colored
according to index. Far right: traces of positions of four particular dimers throughout the trajectory.

Figure 9: Displacement acceptance ratio vs. maximum dumbbell displacement for various displacement trial
move weights between 0.2, 0.5, and 0.8. N = 200 (100 dumbbells), ρ = 0.5, and R = 11.3.

of trial displacements if we change how frequently we perform them relative to trial rotations.
Let’s consider computing an observable function that describes how the molecules order them-

selves in the circular domain. One such meaningful function we’ll call 〈P [θ(r)]〉, where

P (θ) = cos2 θ − 1

2
(94)

and θ is defined as the angle between a dumbbell’s bond and a vector joining its midpoint to the domain
origin. 〈P [θ(r)]〉 is therefore the expectation of P averaged over all dumbbells located between r
and r + δr from the origin. Why is this a meaningful measure of order for this system? Consider that
dumbbells near the periphery like to align so their bonds are tangent to the periphery itself and therefore
perpendicular to the radius, and the further away from the periphery you look, the less likely this order
is to appear. When two vectors are perpendicular, their angle betwen them is π and since cosπ = 0,
we expect 〈P 〉 to be -0.5. Is this what we observe for our system?

To explore this function, the code hdisk_dumbbells_order.c was copied from hdisk_dumbbells
.c. In hdisk_dumbbells_order.c, I introduce the arrays theta[] to hold a tally of cos2 θ values and
Rcount[] to hold a count of hits in each radial bin, so that 〈P (θ(r))〉 = theta[i]/Rcount[i] - 0.5,
where i is the radial bin index set by R and a specified number of bins. Fig. 10 shows P vs r for a
hard-disk dumbbell system at density 0.66 with 400 particles (200 dumbbells), run for 500,000 cycles.

39

4 MONTE CARLO SIMULATION

We can see some interesting structure here, notably that it looks like, on average, there is very little
ordering at the periphery and it becomes substatially higher as we get closer to the origin, though still
not very strong. Notably, at about 1 σ from the periphery, we see a dip in P that might indicate an
enrichment in tangentially-oriented dumbbells.

Figure 10: Order parameter P vs radius for a hard-disk dumbbell system confined to a circle of radius 13.9 σ.

A final note: Since this is a 2D system, we don’t use the second Legendre polynomial of cos θ:

P2(x) =
1

2
(3x2 − 1) (95)

The reason for this is clear. Suppose f(θ) is the probability distribution of the angle θ. Now, since the
molecules are not polar (they have no head or tail), θ is meaningful only on the domain [0, π2]. Suppose
further that there is no preferred angle; i.e., f is a constant. In 2D, normalization requires

1 = f

∫ π/2

0
dθ → f =

2

π
, (96)

and in this case, with no preferred orientation, the average of cos2 θ is

〈
cos2 θ

〉
=

2

π

∫ π/2

0
cos2 θdθ =

2

π

π

4
=

1

2
. (97)

And Eq. 95 will have the described behavior. The second Legendre polynomial evaluates to zero when
cos2 θ is 1

3 , which is indeed what
〈
cos2 θ

〉
evaluates to when f is a constant in three dimensions.

40

4 MONTE CARLO SIMULATION

4.6 Case Study 4: Equation of State of the Lennard-Jones Fluid
The final case study we will consider in this unit on Monte Carlo simulation is the prototypical system

for continuous-space, 3D liquids: The Lennard-Jones fluid. (This is detailed in Sec. 3.4, “Case Study 1”
in Frenkel & Smit [1].) The primary objective of the MC code is to predict the pressure of a sample of
Lennard-Jonesium at a given density and temperature; that is, we can use MC to map out (in principle)
the phase diagram of a material. We will use this case study to introduce and discuss another important
element of a large number of molecular simulations: periodic boundary conditions.

We would like to simulate bulk fluid. The apparently simplest way to approximate bulk behavior in
a finite number of particles is to employ periodic boundaries. That is, we imagine the box of length L
is embedded in an infinite space tiled with replicas of the central box. If we focus on the central box,
and watch as one particle is displaced “out” of the box, it will reappear in the box at the opposite face.
Moreover, particles interact with “images” of other particles in all replica boxes. Periodic boundaries
thus allow us to mimic the infinite extent of bulk fluid.

Figure 11: A schematic representation of periodic boundary conditions in two dimensions. The black particle
leaves the central box by leaving a through right-hand boundary, and consequently re-enters through the left-hand
boundary. The two white particles interact through the boundary.

Periodic boundaries require the use of the minimum image convention (MIC) when computing inter-
particle contributions to the total energy. Below is a modified N2 loop for a 3-D system of point particles
obeying the Lennard-Jones pair potential with periodic boundaries. The function e_i() computes the
sum of all pair interactions between a stipulated particle i and all particles from i0 to N-1. It is called
from total_e() such that a sum of pairwise energies for all unique pairs is computed.

double e_i (int i, double * rx, double * ry, double * rz, int N,
double L, double rc2 , int tailcorr , double ecor ,

int shift , double ecut , double * vir , int i0) {
int j;
double dx, dy, dz, r2, r6i;
double e = 0.0, hL=L/2.0;
*vir =0.0;

41

4 MONTE CARLO SIMULATION

for (j=i0;j<N;j++) {
if (i!=j) {

dx = rx[i]-rx[j];
dy = ry[i]-ry[j];
dz = rz[i]-rz[j];
if (dx>hL) dx -=L;
else if (dx<-hL) dx+=L;
if (dy>hL) dy -=L;
else if (dy<-hL) dy+=L;
if (dz>hL) dz -=L;
else if (dz<-hL) dz+=L;
r2 = dx*dx + dy*dy + dz*dz;
if (r2<rc2) {

r6i = 1.0/(r2*r2*r2);
e += 4*(r6i*r6i - r6i) - (shift?ecut :0.0);
vir += 48(r6i*r6i -0.5* r6i);

}
}

}
return e+(tailcorr?ecor :0.0);

}

double total_e (double * rx, double * ry, double * rz,
int N, double L,

double rc2 , int tailcorr , double ecor ,
int shift , double ecut , double * vir) {

int i;
double tvir;
double e = 0.0;
*vir =0.0;
for (i=0;i<N-1;i++) {

e += e_i(i,rx ,ry,rz,N,L,rc2 ,
tailcorr ,ecor ,shift ,ecut ,&tvir ,i+1);

*vir += tvir;
}
return e;

}

The function e_i() is also useful when determining whether or not to accept a trial displacement
move, since the change in energy ∆U associated with moving particle i can be found by calling e_i
() for particle i before and after the move; the latter energy minus the former is ∆U , since no other
particles are displaced. This is much faster than just doing a full-blown N2 calculation to evaluate each
trial move, but it forces you to do careful accounting to keep the total energy up-to-date. If the move is
accepted the total energy must be incremented by ∆U ; if the virial is also being tallied, the virial must
also be similarly incremented by the change in the virial upon particle displacement.

Note that each i-j displacement component is subject to the MIC; if ∆x is greater than L/2, we
subtract L from it; if it is less than −L/2, we add L to it; same for ∆y and ∆z. Many caveats come
with using periodic boundaries. (A thorough discussion appears in Sec. 3.2.2 of F&S.) The first thing

42

4 MONTE CARLO SIMULATION

to realize is that the total potential per particle (as a sum of pair potentials) in principle diverges in an
infinite periodic system. This can be circumvented by introducing a finite interaction range to the pair
potential. We usually work with systems large enough such that the cutoff of the pair potential, rc, is
less than one-half the box-length, L, in a cubic box. This means that the “image” interactions involve
only immediately neighboring replicas.

Truncation of a pair potential is an important idea to understand. The major point is that the cutoff
must be spherically symmetric; that is, we can’t simply cut off interactions beyond a box length in each
direction, because this results in a directional bias in the interaction range of the potential. So, a hard
cutoff radius rc is required, and it should be less than half the box length. The secondary point is that,
once rc is chosen, if you wish to mimic a potential with infinite range, you must use the correction terms
for energy and pressure described below.

The system we consider is made of N particles which interact via the Lennard-Jones pair potential
(Eq. 89). The particles are confined in a cubic box with side-length L. Length is measured in units of
σ and energy in ε, and we consider particles with 1 σ diameters. A code is provided for simulating this
system using Metropolis Monte Carlo: mclj.c). mjlc.c will compute the pressure given a temperature
and density in the manner discussed in the text. If a cutoff radius is chosen by the user, then a truncated
and shifted pair potential is used, and the following tail corrections are applied:

utail =
8

3
πρεσ3

[
1

3

(
σ

rc

)9

−
(
σ

rc

)3
]

(98)

∆P tail =
16

3
πρ2εσ3

[
2

3

(
σ

rc

)9

−
(
σ

rc

)3
]

(99)

The pressure is computed from
P = ρT + vir/V (100)

where vir is the virial:
vir =

1

3

∑
i>j

f (rij) · rij (101)

and V is the system volume. f (rij) is the force exerted on particle i by particle j, defined as the
negative gradient of the pair potential u (rij) with respect to the position of particle i:

f (rij) = −∂u (rij)

∂ri
(102)

= −rij
rij

∂u (rij)

∂rij
(103)

Here we have made use of the fact that
∂X

∂r
=

r

r

∂X

∂r
(104)

when operating on a function X which depends on relative particle separations. For the Lennard-Jones
pair potential (Eq. 89), we see that

∂u (rij)

∂rij
= 4ε

[
−12

σ12

r13
ij

+ 6
σ6

r7
ij

]
(105)

43

4 MONTE CARLO SIMULATION

Figure 12: Snapshots from a MC simulation of a Lennard-Jones fluid of 512 particles at a density of 0.5 and a
temperature of 1.0 with a cutoff of 2.5 σ, for 10,000 cycles. Left is initial, right is final.

So,

fij (rij) =
rij
r2
ij

{
48ε

[(
σ

rij

)12

− 1

2

(
σ

rij

)6
]}

, (106)

and therefore,

vir =
1

3

∑
i>j

{
48ε

[(
σ

rij

)12

− 1

2

(
σ

rij

)6
]}

(107)

Notice that any particular pair’s contribution to the total virial is positive if the members of the pair are
repelling one another (positive f along rij)), and negative if the particles are attracting one another.

If you read the code mclj.c, you should see that the initialization of positions is accomplished
by putting the particles on cubic lattice sites such that an overall density is achieved. It is therefore
convenient to run simulations with numbers of particles that are perfect cubes, such as 128, 216, 512,
etc, so that the initial state uniformly fills the box.

Another consideration is that a certain number of cycles should be “burned” prior to gathering statis-
tics so this initial state is fully erased. The flag -ne allows the user to specify how many equilibration
cycles are to be performed before switching to “production” mode.

Fig. 12 shows two snapshots made with VMD of the Lennard-Jones systems with 512 particles.
As a suggested exercise, you can use mclj.c to try to reproduce Figure 3.5 in F&S, which shows

P vs. ρ at both T = 2.0 and T = 0.9. How many cycles do you need? How many equilibration cycles?
What maximum displacement did you choose?

Below are some of my preliminary results using the code mclj.c. I used only 5,000 cycles for 512
particles for each point, and each point is the result of a single run. These numbers appear to compare
well with those in Figure 3.5 in F&S, for which we have no idea how many cycles or independent runs
were performed.

44

4 MONTE CARLO SIMULATION

Figure 13: Pressure vs. density in a Lennard-Jones fluid, measured by Metropolis MC simulation, at reduced
temperatures 0.9, 2.0, and 3.1. 600,000 particle-displacement moves were performed per simulation, and five
independent simulations per point were performed. Pressures are averages over these five, and standard devia-
tions are smaller than the line width. Each system contained 512 particles. A cutoff of 3.5 σ was used.

45

5 MOLECULAR DYNAMICS SIMULATION

5 Molecular Dynamics Simulation
We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with

appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically
is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique
is that we can observe our dynamical system explore phase space by solving all particle equations
of motion. We treat the particles as classical objects that, at least at this stage of the course, obey
Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence
of states over which we can compute ensemble averages, it additionally gives us time-resolved infor-
mation, something that Metropolis Monte Carlo cannot provide. The “ensemble averages” computed in
traditional MD simulations are in practice time averages:

〈G〉 = Ḡ =
1

Nsamp∆t

Nsamp∑
i=1

G [r (t)] (108)

The ergodic hypothesis partially requires that the measurement time, τmeas = Nsamp∆t, is greater than
the longest relaxation time, τr, in the system. The price we pay for this extra information is that we must
at least access if not store particle velocities in addition to positions, and we must compute interparticle
forces in addition to potential energy. We will introduce and explore MD in this section.

5.1 MD: Theoretical Background
5.1.1 Newtonian Mechanics and Numerical Integration

The Newtonian equations of motion can be expressed as

mr̈i +∇iU = 0 (109)

where r̈i is the acceleration of particle i, and the force acting on particle i is given by the negative
gradient of the total potential, U , with respect to its position:

fi = −∇iU = −∂U

∂ri
(110)

Whereas in a typical MC simulation, in which all we really need is the ability to evaluate the potential
energy of a configuration, in MD we actually need to evaluate all interparticle forces for a configuration.

We first encountered interparticle forces in Sec. 4.6 in a discussion of the virial in computing pres-
sure in a standard Metropolis Monte Carlo simulation of the Lennard-Jones liquid. At this point, it
suffices to consider a system with generic pairwise interactions, for which the total potential is given by:

U =
∑
j

∑
k>j

ujk (rjk) (111)

where rjk is the scalar distance between particles j and k, and ujk is the pair potential specific to pair
(j, k). For a system ofN identical particles, Eq. 111 is a summation of 1

2N (N − 1) terms. So, the force
on any particular particle, i, selects N terms from the above summation; that is, those terms involving
particle i:

fi = −
N∑
j=1

∂uij (rij)

∂ri
=

N∑
j=1

fij (112)

where we can define the quantity fij is the force exerted on particle i by virtue of the fact that it interacts

46

5 MOLECULAR DYNAMICS SIMULATION

with particle j. Because uij is a function of a scalar quantity, we can break the derivative up:

fij (rij) = −∂ULJ (rij)

∂ri
(113)

= −rij
rij

∂ULJ (rij)

∂rij
(114)

Eq. 114 illustrates that, because rij = −rji,

fij = −fji (115)

This leads us to the comforting result that

F =
∑
i

fi = 0 (116)

That is, the total force on the collection of particles is zero. (The same result holds identically for all
potentials which are functions of relative interatomic positions only.) But the practical advantage of this
result is that, when we visit the pair (i, j) and compute the force on i due to its interaction with j, fij ,
we automatically have the force on j due to its interaction with i, −fij . Some refer to this as “Newton’s
Third Law.”

The other key aspect of a simple MD program is a means of numerical integration of the equations of
motion of each particle. We first consider the “simple Verlet” algorithm, which is an explicit integration
scheme. Let us consider a Taylor-expanded version of one coordinate of the position of a particular
particle, r(t):

r (t+ ∆t) = r (t) + v (t) ∆t+
f (t)

2m
(∆t)2 +

(∆t)3

3!

...
r +O

[
(∆t)4

]
, (117)

and, letting ∆t→ −∆t,

r (t−∆t) = r (t)− v (t) ∆t+
f (t)

2m
(∆t)2 − (∆t)3

3!

...
r +O

[
(∆t)4

]
. (118)

When we add these together, we obtain:

r (t+ ∆t) ≈ 2r (t)− r (t−∆t) +
f (t)

2m
(∆t)2 . (119)

Eq. 119 is termed the “Verlet” algorithm (going back to Verlet’s simulations of liquid argon [4]). Notice
that, when one chooses a small ∆t, one can predict the position of a particle at time t + ∆t given its
position at time t and the force acting on it at time t. We see that the new position coordinate has an
error of order (∆t)4. ∆t is called the “time step” in a molecular dynamics simulation.

A system obeying Newtonian mechanics conserves total energy. For a dynamical system (i.e., a
system of interacting particles) obeying Newtonian mechanics, the configurations generated by inte-
gration are members of the microcanonical ensemble; that is, the ensemble of configurations for which
NV E is constant, constrained to a subvolume Ω in phase space. The “natural” ensemble for Metropolis
Monte Carlo, you will recall, is canonical; for MD, it is microcanonical. Later, we will consider techniques
for conducting MD simulations in other ensembles (at constant temperature and/or pressure, for exam-
ple).

When the Verlet algorithm is used to integrate Newtonian equations of motion, the total energy

47

5 MOLECULAR DYNAMICS SIMULATION

of the system is conserved to within a finite error, so long as ∆t is “small enough.” How does one
determine a reasonable value for ∆t? Basically the same way we determined reasonable maximum
displacements in continuous-space MC simulation: trial and error. We will play with time-step values in
the next section, in which we consider MD simulation of the Lennard-Jones liquid.

In saying that the total energy is conserved, we realize that total energy is the sum of potential and
kinetic energy. To integrate the equations of motion, we need to compute neither the potential or kinetic
energy, so we have to take extra steps in an MD program to make sure total energy is being conserved.
Potential energy is easily accumulated during the calculation of forces, but kinetic energy has to be
computed using particle velocities:

K =
1

2

∑
i

mi |vi|2 (120)

But where are velocities in the Verlet algorithm? They are not necessary for updating positions, but can
be easily “generated” provided one stores previous, current, and next-time-step positions in implement-
ing the algorithm:

v (t) =
r (t+ ∆t)− r (t−∆t)

2∆t
+ O

[
(∆t)2

]
(121)

Eq. 121 is used in Algorithm 6 in F&S (Integration of the Equations of Motion) simply in order to compute
K . Energy consservation can be checked by tracking the total energy, U + K .

While we are considering the instantaneous kinetic energy, K , it is useful to recognize a working
definition of instantaneous temperature, T :

3

2
NkBT = K =

1

2

N∑
i=1

mi |vi|2 (122)

Because K fluctuates in time as the system evolves, so does the temperature. So, the actual temper-
ature of a system in a microcanonical MD simulation is a time-average.

Perhaps the most popular integrator is the “velocity Verlet” algorithm [5]. Every MD code I have ever
written or used (this totals a dozen or so) has used the velocity Verlet algorithm, so I feel at least it is
worth explaining here. The velocity Verlet algorithm requires updates of both positions and velocities:

r (t+ ∆t) = r (t) + v (t) ∆t+
f (t)

2m
(∆t)2 (123)

v (t+ ∆t) = v (t) +
f (t+ ∆t) + f (t)

2m
∆t (124)

The update of velocities uses an arithmetic average of the force at time t and t + ∆t. This results in
a slightly more stable integrator compared to the simple Verlet algorithm, in that one may use slightly
larger time-steps to achieve the same level of energy conservation. (Aside: a nice project idea is to
quantify this statement.) This might imply that one has to maintain two parallel force arrays. In practice,
this is not necessary, because the velocity update can be split to either side of the force computation,

48

5 MOLECULAR DYNAMICS SIMULATION

forming a so-called “leapfrog” algorithm:

r (t+ ∆t) = r (t) + v (t) ∆t+
f (t)

2m
(∆t)2 Update positions (125)

v

(
t+

1

2
∆t

)
= v (t) +

f (t)

2m
∆t Half-update velocities (126)

r (t+ ∆t) → f (t+ ∆t) Compute forces.

v (t+ ∆t) = v

(
t+

1

2
∆t

)
+
f (t+ ∆t)

2m
∆t Half-update velocities (127)

In the next section (Sec. 5.2), we will consider the velocity Verlet algorithm in the context of an MD
simulation of the Lennard-Jones fluid.

As a final tidbit, we must consider periodic boundaries applied in a molecular dynamics simulation.
Consider modes of a system. Think of a mode as a concerted vibration of collections of particles
with a characteristic wavelength. A dense system will have short wavelength (local) modes, and long
wavelength modes, like large-scale concerted “sloshing” of the particles in the system. These modes
exist naturally in matter, and the partitioning of energy among these various modes is important to
understand in describing some transport properties. The key caveat is that modes with wavelengths
that are incommensurate with the box size are not permitted in a periodic system because they cancel
themselves. A mode is commensurate with the box so long as an integer multiple of its wavelength is
the box length. This can actually be very restrictive in systems with a wide span of wavelengths, like
amorphous unstructured solids, but is not that important for amorphous liquids.

5.1.2 The Liouville Operator Formalism to Generating MD Integration Schemes
In this section, we present an elegant formalism for deriving MD integrators, as discussed by Tuck-

erman et al. [6]. What we present here is essentially the first two parts of the second section of Refer-
ence [6], including some of my own elaboration and some of that presented in section 4.3 of F&S.

Imagine a quantity f which is a function of particle positions rN and momenta pN . Its time derivative
is given by

ḟ = ṙ
∂f

∂r
+ ṗ

∂f

∂p
(128)

We can write down a formal solution to this equation. First, define the Liouville operator as

iL = ṙ
∂

∂r
+ ṗ

∂

∂p
(129)

As Tuckerman points out, the i is there by convention and ensures that the operator is Hermitian. We
can re-express Eq. 128 as

ḟ = iLf (130)

which we solve directly to yield
f (t) = exp (iLt) f (0) . (131)

If f is itself a vector quantity identical to the set of positions and momenta, Γ, we have a way to express,
formally, the evolution of the system:

Γ (t) = U (t) Γ (0) (132)

where U(t) = exp (iLt) is the classical propagator. The idea with numerical integration is that we find a
way to represent the propagator as a discrete algorithm for constructing the system at some time t+∆t
given the system at time t.

49

5 MOLECULAR DYNAMICS SIMULATION

Let’s build our discrete integrator by decomposing the operator:

iL = iL1 + iL2 (133)

This does not necessarily lead to two independent propagators, because the two components do not
commute; that is:

exp [(iL1 + iL2) t] 6= exp (iL1t) exp (iL2t) (134)

Consider the action of the partial Liouville operator

iL1 ≡ ṙ (0)
∂

∂r
, (135)

which gives

f
[
pN (t) , rN (t)

]
= exp

[
tṙ (0)

∂

∂r

]
f
[
pN (0) , rN (0)

]
(136)

=
∞∑
n=0

(ṙ (0) t)n

n!

∂n

∂rn
f
[
pN (0) , rN (0)

]
(137)

= f
[
pN (0) , rN (0) + ṙ (0)

]
(138)

The last line is the collapse of the Taylor expansion of the line immediately above it. So, the effect of
this operator fragment is a simple shift of coordinates given some initial velocities. This is an interesting
fact: we can consider first-order integration as a Taylor expansion.

The next step of Tuckerman was to apply the Trotter identity:

exp [(iL1 + iL2) t] = lim
P→∞

[exp (iL1t/2P) exp (iLt2/P) exp (iL1t/2P)]P (139)

When P is large but finite:

exp [(iL1 + iL2) t] = [exp (iL1t/2P) exp (iL2t/P) exp (iL1t/2P)]P exp
[
O
(
1/P 2

)]
(140)

Now, we define a finite timestep as ∆t = t/P and we have then a discrete operator that, when applied
to a configuration at time t, will produce the configuration at time t+ ∆t:

exp (iL1∆t/2) exp (iL2∆t) exp (iL1∆t/2) Γ (t) = Γ (t+ ∆t) (141)

By performing this operation sequentially P times, we recover a discretized version of the formal solution
to generate Γ (t) given Γ (0).

Now we explicitly consider the decomposition:

iL1 = ṗ (0)
∂

∂p
(142)

iL2 = ṙ (0)
∂

∂r
(143)

We can perform one ∆t’s worth of update using the following operation on f :

exp

(
ṗ (0)

(
∂

∂p

)
∆t

2

)
exp

(
ṙ (0)

(
∂

∂r

)
∆t

)
exp

(
ṗ (0)

(
∂

∂p

)
∆t

2

)
f
[
pN (t) , rN (t)

]

50

5 MOLECULAR DYNAMICS SIMULATION

The action of the rightmost operator, exp
(
ṗ (0)

(
∂
∂p

)
∆t
2

)
:

f
[
pN (t) , rN (t)

]
→ f

{[
p (t) +

∆t

2
ṗ (∆t)

]N
, [r (t)]N

}

The action of the next rightmost, exp
(
ṙ (0)

(
∂
∂r

)
∆t
)
:

f

{[
p (t) +

∆t

2
ṗ (∆t)

]N
, [r (t)]N

}
→ f

{[
p (t) +

∆t

2
ṗ (0)

]N
,

[
r (t) + ∆tṙ

(
∆t

2

)]N}

Then, the action of the final operator:

f

{[
p (t) +

∆t

2
ṗ (0)

]N
,

[
r (t) + ∆tṙ

(
∆t

2

)]N}
→ f

{[
p (t) +

∆t

2
ṗ (0) +

∆t

2
ṗ (∆t)

]N
,

[
r (t) + ∆tṙ

(
∆t

2

)]N}

Noting that p = mṙ and F = ma = ṗ, we can summarize the effect of this three-step update of the
positions and velocities as

r (∆t) = r (0) + ∆tṙ (0) +
(∆t)2

2

F [r (0)]

m
, (144)

ṙ (∆t) = ṙ (0) +
∆t

2m
{F [r (0)] + F [r (∆t)]} (145)

This is the velocity-Verlet algorithm, seen previously in Eqs 125-127. Interestingly, we can also
reverse the order of the decomposition; i.e.,

iL1 = ṙ (0)
∂

∂r
(146)

iL2 = ṗ (0)
∂

∂p
(147)

The update algorithm that arises is

ṙ (∆t) = ṙ (0) + ∆tF

[
r (0) +

∆t

2m
ṙ (0)

]
(148)

r (∆t) = r (0) +
∆t

2
[ẋ (0) + ẋ (∆t)] . (149)

This is termed the position Verlet algorithm [6]. Tuckerman et al. showed that this new algorithm
results in a slightly lower drift in total energy in MD simulation of a simple Lennard-Jones fluid, when
the time-step is greater than about 0.004.

5.2 Case Study 1: An MD Code for the Lennard-Jones Fluid
5.2.1 Introduction

Let us consider a few of the important elements of any MD program:
1. Force evaluation;
2. Integration; and
3. Configuration output.
We will understand these elements by manipulating an existing simulation program that implements

the Lennard-Jones fluid (which you may recall was analyzed using Metropolis Monte-Carlo simulation

51

5 MOLECULAR DYNAMICS SIMULATION

in Sec. 4). The program is called mdlj.c in the instructional codes repository.
Recall the Lennard-Jones pair potential:

u (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(150)

When implementing this in an MD code, similar to its implementation in MC, we adopt a reduced unit
system, in which we measure length in σ, and energy in ε. Additionally, for MD, we need to measure
mass, and we adopt units of particle mass,m. This convention makes the force on a particle numerically
equivalent to its acceleration. With these conventions, time is a derived unit:

t[=]σ
√
m/ε (151)

We also measure reduced temperature in units of ε/kB ; so for a system of identical Lennard-Jones
particles:

3

2
NT = K =

1

2

N∑
i=1

|vi|2 (152)

(Recall that the mass m is 1 in Lennard-Jones reduced units.) These conventions obviate the need to
perform unit conversions in the code.

We have already encountered interparticle forces for the Lennard-Jones pair potential in the context
of computing the pressure from the virial in the MC simulation of the LJ fluid (Sec. 4.6). Briefly, the force
exerted on particle i by virtue of its Lennard-Jones interaction with particle j, fij , is given by:

fij (rij) =
rij
r2
ij

{
48ε

[(
σ

rij

)12

− 1

2

(
σ

rij

)6
]}
≡ rijf. (153)

And, as shown in the previous section, once we have computed the vector fij , we automatically have
fji, because fij = −fji. The scalar f is called a “force factor.” If f is negative, the force vector fij points
from i to j, meaning i is attracted to j. Likewise, if f is positive, the force vector fij points from j to i,
meaning that i is being forced away from j.

Below is a C-code fragment for computing both the total potential energy and interparticle forces:

double forces (double * rx, double * ry, double * rz,
double * fx, double * fy, double * fz ,
int n) {

int i,j;
double dx, dy, dz, r2, r6, r12;
double e = 0.0, f = 0.0;

for (i=0;i<n;i++) {
fx[i] = 0.0;
fy[i] = 0.0;
fz[i] = 0.0;

}
for (i=0;i<(n-1);i++) {

for (j=i+1;j<n;j++) {
dx = rx[i]-rx[j];
dy = ry[i]-ry[j];

52

5 MOLECULAR DYNAMICS SIMULATION

dz = rz[i]-rz[j];
r2 = dx*dx + dy*dy + dz*dz;
r6i = 1.0/(r2*r2*r2);
r12i = r6i*r6i;
e += 4*(r12i - r6i);
f = 48/r2*(r6i*r6i -0.5* r6i);
fx[i] += dx*f;
fx[j] -= dx*f;
fy[i] += dy*f;
fy[j] -= dy*f;
fz[i] += dz*f;
fz[j] -= dz*f;

}
}
return e;

}

Notice that the argument list now includes arrays for the forces, and because force is a vector quantity,
we have three parallel arrays for a three-dimensional system. These forces must of course be initialized,
shown in lines 6-10. The N2 loop for visiting all unique pairs of particles is opened on lines 11-12. The
inside of this loop is very similar to the evaluation of potential first presented in the MC simulation of the
Lennard-Jones fluid; the only real difference is the computation of the “force factor,” f , on line 20, and
the subsequent increment of force vector components on lines 21-26. Notice as well that there is no
implementation of periodic boundary conditions in this code fragment; it was left out for simplicity. What
would this “missing” code do? (Hint: look at the code mdlj.c for the answer.)

The second major aspect of MD is the integrator. As discussed in class, we will primarily use Verlet-
style (explicit) integrators. The most common version is the velocity-Verlet algorithm [5], first presented
in Sec. 5.1.1. Below is a fragment of C-code for executing one time step of integration for a system of
N particles:

for (i=0;i<N;i++) {
rx[i]+=vx[i]*dt+0.5* dt2*fx[i];
ry[i]+=vy[i]*dt+0.5* dt2*fy[i];
rz[i]+=vz[i]*dt+0.5* dt2*fz[i];
vx[i]+=0.5* dt*fx[i];
vy[i]+=0.5* dt*fy[i];
vz[i]+=0.5* dt*fz[i];

}

PE = total_e(rx,ry,rz ,fx,fy,fz,N,L,rc2 ,ecor ,ecut ,&vir);

KE = 0.0;
for (i=0;i<N;i++) {

vx[i]+=0.5* dt*fx[i];
vy[i]+=0.5* dt*fy[i];
vz[i]+=0.5* dt*fz[i];
KE+=vx[i]*vx[i]+vy[i]*vy[i]+vz[i]*vz[i];

}
KE *=0.5;

53

5 MOLECULAR DYNAMICS SIMULATION

Notice the update of positions (Eq. 125), where vx[i] is the x-component of velocity, fx[i] is the
x-component of force, dt and dt2 are the time-step and squared time-step, respectively. Notice that
there is no implementation of periodic boundaries in this code fragment; what would this “missing code”
look like? (Hint: see mdlj.c for the answer!) Lines 5-7 are the first half-update of velocities (Eq. 126).
The force routine computes the new forces on the currently updated configuration on line 10. Then,
lines 12-18 perform the second-half of the velocity update (Eq. 127). Also note that the kinetic energy,
K , is computed in this loop.

5.2.2 The Code
The complete C program, mdlj.c, contains a complete implementation of the Lennard-Jones force

routine and the velocity-Verlet integrator. Compilation instructions appear in the header comments. Let
us now consider some sample results from mdlj.c. First, mdlj.c includes an option that outputs a brief
summary of the command line options available:

$ mdlj -h
mdlj usage:
mdlj [options]

Options:
-N [integer] Number of particles
-rho [real] Number density
-dt [real] Time step
-rc [real] Cutoff radius
-ns [real] Number of integration steps
-T0 [real] Initial temperature
-fs [integer] Sample frequency
-traj [string] Trajectory file name
-prog [integer] Interval with which logging output is generated
-icf [string] Initial configuration file
-seed [integer] Random number generator seed
-uf Print unfolded coordinates in trajectory file
-h Print this info

Let us run mdlj.c for 512 particles and 1000 time-steps at a density of 0.85 and an initial temperature
of 2.5. We will pick a relatively conservative (small) time-step of 0.001. We will not specify an input
configuration, instead allowing the code to create initial positions on a cubic lattice. Here is what we
see in the terminal:

$./mdlj -N 512 -fs 10 -ns 1000 -traj traj.xyz -T0 2.5 -rho 0.85 -rc 2.5
NVE MD Simulation of a Lennard -Jones fluid
L = 8.44534; rho = 0.85000; N = 512; rc = 2.50000
nSteps 1000, seed 23410981 , dt 0.00100
#LABELS step time PE KE TE drift T P
0 0.00000 -2429.99610 1919.39622 -510.59988 2.58118e-07 2.49921 4.28896
1 0.00100 -2428.18306 1917.58237 -510.60069 1.84111e-06 2.49685 4.30232
2 0.00200 -2425.15191 1914.54975 -510.60216 4.73104e-06 2.49290 4.32466
3 0.00300 -2420.88660 1910.28230 -510.60430 8.92431e-06 2.48735 4.35604
4 0.00400 -2415.36384 1904.75673 -510.60711 1.44276e-05 2.48015 4.39659
5 0.00500 -2408.55314 1897.94254 -510.61060 2.12521e-05 2.47128 4.44649
6 0.00600 -2400.41688 1889.80212 -510.61476 2.94064e-05 2.46068 4.50593
7 0.00700 -2390.91048 1880.29088 -510.61960 3.88852e-05 2.44830 4.57515

54

5 MOLECULAR DYNAMICS SIMULATION

8 0.00800 -2379.98339 1869.35814 -510.62525 4.99443e-05 2.43406 4.65427
9 0.00900 -2367.57807 1856.94670 -510.63137 6.19292e-05 2.41790 4.74385
10 0.01000 -2353.63308 1842.99526 -510.63782 7.45638e-05 2.39973 4.84412
11 0.01100 -2338.08390 1827.43905 -510.64484 8.83209e-05 2.37948 4.95492
12 0.01200 -2320.86308 1810.21130 -510.65178 1.01908e-04 2.35705 5.07698
...

Each line of output after the header information corresponds to one time-step. (The header line that
begins with the special word #LABELS is used by the Python program plot_mdlj_log.py.) The first
column is the time-step, the second is the time value, the third is the potential energy, the fourth is
the kinetic energy, the fifth is the total energy, the sixth is the “drift,” the seventh is the instantaneous
temperature (Eq. 152), and the eighth is the instantaneous pressure (Eq. 100).

The drift is output to assess the stability of the explicit integration. As a rule of thumb, we would like
to keep the drift to below 0.01% of the total energy. The drift reported by mdlj.c is computed as

∆T (t) =
T (t)−T (0)

T (0)
(154)

where T is the total energy. The plots below show the output trace for the full 1,000 time-steps. We
note that with this time-step value (0.001) keeps the total energy conserved to about one part in 104.

Figure 14: Left. Potential (PE), kinetic (KE), and total (TE) energies as functions of time in an NVE MD simulation
of the Lennard-Jones fluid at reduced temperature T = 2.0. (Initial temperature was set at 2.5.) Right. Drift in
total energy (Eq. 154) vs. time.

Now, this invocation of mdlj.c produces an XYZ-format trajectory file (just like mclj did). Here, I
have expanded my XYZ-format convention to allow inclusion of velocities in the output file. Inclusion of
velocities is signified by a 1 on the same line as the number of particles (the first line in each frame). If
there is a 1 in that position, then each particle line includes three position coordinates and three velocity
components:

$ more traj.xyz
512 1
BOX 8.44534 8.44534 8.44534
16 0.527833 0.527833 0.527833 -0.982352 -0.823300 -1.530590
16 1.583500 0.527833 0.527833 -0.549726 -0.942381 1.363996
16 2.639167 0.527833 0.527833 1.145014 -0.616762 -1.172725
16 3.694834 0.527833 0.527833 1.520337 3.057595 -1.522653
16 4.750501 0.527833 0.527833 -0.541350 -0.144665 -0.919845
16 5.806168 0.527833 0.527833 -0.221483 1.143893 -1.015784

55

5 MOLECULAR DYNAMICS SIMULATION

16 6.861835 0.527833 0.527833 5.752205 -1.045603 1.066189
16 7.917502 0.527833 0.527833 0.819532 0.167275 -1.230297
16 0.527833 1.583500 0.527833 -1.062591 2.169692 -1.318921
16 1.583500 1.583500 0.527833 -1.394993 0.055193 1.411530
...

The number “16” at the beginning designates the “type” as an atomic number; for simplicity, I have
decided to call all of my particles sulfur. (XYZ format is often used for atomically-specific configurations.)
The functions xyz_out() and xyz_in() write and read this format, respectively, in mdlj.c. We will use
these functions in other programs as well, typically those which analyze configuration data. Examples
of such analysis codes are the subjects of the next two sections.

At this point, you can’t do much with all this data, except appreciate just how much data an MD code
can produce. In this example, we generated 100 frames of configuration data (positions and velocities)
for a 512-atoms system, and the resulting trajectory file is about 3.5 megabytes in size. Of course, that
file size scales with both the number of particles and the number of frames it contains. It is not unusual
nowadays for researchers to use MD to produce hundreds of gigabytes of configuration data in order
to write a single paper. It leads one to think that perhaps a lesson on handling large amounts of data is
appropriate for a course on Molecular Simulation; however, I’ll forego that for now by trying to keep our
sample exercises small.

One thing we can do with this data is make nice pictures using VMD. Below are two renderings,
one of the initial snapshot, and the other at time t = 1 (1000 time steps). Notice how the initially perfect
crystalline lattice has been wiped out.

Figure 15: VMD-generated snapshots of configurations from an NVE MD simulation of the Lennard-Jones fluid
at density ρ = 0.85 and average temperature 〈T 〉 ≈ 2. Particles are colored according to their initial z position.

5.3 Case Study 2: Static Properties of the Lennard-Jones Fluid
5.3.1 Running the code

The code mdlj.c was run on 108 particles with positions initialized on a simple cubic lattice at a
density ρ = 0.8442 and temperature (specified by velocity assignment and scaling) initially set at T =
0.728. A single run of 600,000 time steps was performed, which took about 2 minutes on my laptop.
(This is almost 106 particle-updates per second; not bad for a laptop running a silly N2 pair search, but
it’s only for ∼ 100 particles...the same algorithm applied to 10,000 would be slower.) The commands I
issued looked like:
$ mkdir md_cs2
$ cd md_cs2
$../ mdlj -N 108 -fs 1000 -ns 600000 -rho 0.8442 -T0 0.728 -rc 2.5 -traj traj1.xyz -prog 100 >& 1.out &
$ tail -f 1.out
468900 468.90000 -475.45590 242.36056 -233.09534 -2.79034e-04 1.49605 5.43064
469000 469.00000 -475.67663 242.58353 -233.09310 -2.88639e-04 1.49743 5.11914

56

5 MOLECULAR DYNAMICS SIMULATION

469100 469.10000 -477.58731 244.49557 -233.09175 -2.94452e-04 1.50923 4.88396
469200 469.20000 -457.41152 224.32176 -233.08975 -3.02989e-04 1.38470 5.82717
469300 469.30000 -492.03036 258.93556 -233.09481 -2.81326e-04 1.59837 4.82093
469400 469.40000 -465.44072 232.34350 -233.09723 -2.70947e-04 1.43422 5.69688
469500 469.50000 -478.52166 245.42514 -233.09652 -2.73957e-04 1.51497 5.01491
469600 469.60000 -469.00769 235.90985 -233.09784 -2.68307e-04 1.45623 5.64466
469700 469.70000 -476.27992 243.18354 -233.09637 -2.74603e-04 1.50113 5.34172
469800 469.80000 -461.91910 228.82734 -233.09176 -2.94382e-04 1.41251 5.68907
469900 469.90000 -469.00227 235.90429 -233.09798 -2.677^C

The final \& puts the simulation “in the background,” and returns the shell prompt to you. The tail -f
command allows you to “watch” as the log file is written to. You can also verify that the job is running
by issuing the “top” command, which displays in the terminal the a listing of processes using CPU,
ranked by how intensively they are using the CPU. This command “takes over” your terminal to display
continually updated information, until you hit Ctrl-C.
top - 13:43:27 up 4 days , 6:19, 0 users , load average: 0.16, 0.45, 0.28
Tasks: 29 total , 2 running , 27 sleeping , 0 stopped , 0 zombie
%Cpu(s): 12.7 us, 0.0 sy , 0.0 ni, 83.3 id , 0.0 wa, 0.0 hi , 4.0 si, 0.0 st
MiB Mem : 12608.9 total , 11169.1 free , 739.2 used , 700.7 buff/cache
MiB Swap: 4096.0 total , 4096.0 free , 0.0 used. 11616.8 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14668 cfa 20 0 6652 1268 1116 R 100.0 0.0 0:02.83 mdlj
13073 cfa 20 0 863448 47256 28728 S 6.7 0.4 0:19.24 node

1 root 20 0 1020 648 520 S 0.0 0.0 1:29.57 init
8 root 20 0 888 76 16 S 0.0 0.0 0:00.00 init
9 root 20 0 888 76 16 S 0.0 0.0 1:04.20 init

10 cfa 20 0 10164 4980 3188 S 0.0 0.0 0:00.11 bash
168 root 20 0 984 172 16 S 0.0 0.0 0:00.00 init

From the command line arguments shown above, we can see that this simulation run will produce
601 snapshots, beginning with t = 0 and outputting every 1000 steps. Each frame has 108 lines of 69
bytes each, plus another 30 for the header in each frame, so basically every frame is 7,482 bytes. With
601 of them, that is 4,496,682 bytes, or 4.2884 megabytes (1 megabyte is 1,048,576 bytes). We can
confirm this calculation using the du (disk usage) command:

$ du -sh traj1.xyz
4.3M traj1.xyz

Thirty years ago, one might have raised an eyebrow at this; nowadays, this is very nearly an insignificant
amount of storage.

5.3.2 Equilibration and Decorrelation
An important purpose of this case study is to quantify the notion of “equilibration” of the system by

assessing correlations in (apparently) randomly fluctuating quantities like potential energy. Remember,
in order to perform accurate ensemble averaging over an MD trajectory, we have to be sure that corre-
lations in the properties we are measuring have “died out.” This is another way of saying that the length
of the time interval over which we conduct the time average must be much longer than the correlation
time. In this case study, we illustrate the “block averaging” technique of Flyvbjerg and Petersen [7] to
determine the equilibration time-scale of the potential energy.

First, compute the variance of the L samples of U :

σ2
0 (U) ≈ 1

L

L∑
i=1

[
Ui − Ū

]2 (155)

This is approximate because of so far undetermined time-correlations in U ; that is, not all L samples
are uncorrelated. For example, two samples one time-step apart will likely be very close to one another.
Now, we block the data by averaging L/2 pairs of adjacent values:

U
(1)
i =

U2i−1 + U2i

2
(156)

57

5 MOLECULAR DYNAMICS SIMULATION

Figure 16: The standard deviation, σ, of potential energy per particle vs. number of blocking operations M for
a simulations of 150,000 and 600,000 time-steps: initial temperature T0 = 0.729, density ρ = 0.8442, number of
particles N = 108.

Table 1: Average potential energy per particle U /N , kinetic energy K /N , total energy T /N, and pressure
P (all in Lennard-Jones units) for three distinct N=108 particle systems run for 600,000 time steps at number
density ρ = 0.8442 and initial temperature T0 of 0.728.

Run 〈U 〉 /N 〈K 〉 /N 〈T 〉 〈P 〉
1 −4.4165± 0.0012 2.2577± 0.0012 1.5051± 0.0008 5.1960± 0.0057
2 −4.4188± 0.0010 2.2597± 0.0010 1.5064± 0.0007 5.1948± 0.0050
3 −4.4157± 0.0011 2.2564± 0.0011 1.5043± 0.0008 5.2022± 0.0055

Avg. −4.4170± 0.0011 2.2579± 0.0011 1.5053± 0.0008 5.1977± 0.0054

The (1) superscript indicates that this is a “first-generation” coarsening of the potential energy trace.
The variance of this new set, σ2

1 is computed. Then the process is recursively carried out through
many subsequent generations. After many blocking operations, the coarsened samples, U

(j)
i , become

uncorrelated, and the variance saturates (temporarily). This means we should observe a plateau in a
plot of variance vs generation. The Python program flyvberg.py implements this calculation using
outputs of mdlj.c as inputs.

According to the discussion of this blocking technique, the standard deviation shows a dependence
on the blocking degree, M , when the blocked averages are correlated, and plateaus at a blocking
degree for which the averages become uncorrelated. This blocking degree corresponds to a time
interval of length 2M . This data indicates that potential energy decorrelates after a time of approximately
210 ≈ 1000 steps. This is a reassuring result, as we could have guessed that 1000 steps are required
based on the initial transience in the energy traces seen in the previous figure. I ran three independent
simulations, each differing only in the random number seed used. The results are shown in Table 1.

5.3.3 Radial Distribution Functions and Postprocessing
A second major objective of this case study is to demonstrate how to compute the radial distribution

function, g(r). The radial distribution function is an important statistical mechanical function that cap-
tures the structure of liquids and amorphous solids. We can express g(r) using the following statement:

ρg(r) =
average density of particles at r given that
a tagged particle is at the origin

(157)

The procedure we will follow will be to write a second program (a “postprocessing code”) which
will read in the trajectory output produced by the simulation, mdlj.c. The general structure of a g(r)

58

5 MOLECULAR DYNAMICS SIMULATION

post-processing code could look like this:
1. Determine trajectory time limits: start, stop, and step
2. Initialize histogram.
3. Read in the trajectory as a list of frames.
4. For each frame:

(a) Visit all unique pairs of particles, and update histogram for each visit if applicable
5. Normalize histogram and output.
6. End.
We will consider a code, rdf.c, that implements this algorithm for computing g(r), but first we

present a brief argument for post-processing vs on-the-fly processing for computing quantities such
as g(r). For demonstration purposes, it is arguably simpler to drop in a g(r)-histogram update sam-
pling function into an existing MD simulation program to enable computation of g(r) during a simulation,
compared to writing a wholly separate program. After all, it nominally involves less coding. The counter-
argument is that, once you have a working (and eventually optimized) MD simulation code, one should
be wary of modifying it. The purpose of the MD simulation is to produce samples. One can produce
samples once, and use any number of post-processing codes to extract useful information. The coun-
terargument becomes stronger when one considers that, for particularly large-scale simulations, it is
simply not convenient to re-run an entire simulation when one discovers a slight bug in the sampling
routines. The price one pays is that one needs the disk space to store configurations.

As shown earlier, one MD simulation of 108 particles out to 600,000 time steps, storing configu-
rations every 1,000 time steps, requires less than 5 MB. This is an insignificant price. Given that we
know that the MD simulation works correctly, it is sensible to leave it alone and write a quick, simple
post-processing code to read in these samples and compute g(r).

The code rdf.c is a C-code implementation of just such a post-processing code. This program
illustrates a different way to abstractify the trajectory, namely as a list of frames. A frame is an instance
of an abstract data type called frametype that we define (for now) in rdf.c, along with a special
function NewFrame() to allocate memory for a frame, and another read_xyz_frame() to read a frame
in from an XYZ-format trajectory:

typedef struct FRAME {
double * rx, * ry, * rz; // coordinates
double * vx, * vy, * vz; // velocities
int * typ; // array of particle types 0, 1, ...
int N; // number of particles
double Lx, Ly, Lz; // box dimensions

} frametype;

/* Create and return an empty frame */
frametype * NewFrame (int N, int hv) {

frametype * f = (frametype *) malloc(sizeof(frametype));
f->N=N;
f->rx=(double *) malloc(sizeof(double)*N);
f->ry=(double *) malloc(sizeof(double)*N);
f->rz=(double *) malloc(sizeof(double)*N);
if (hv) {

// caller has requested a frame with space for velocities
f->vx=(double *) malloc(sizeof(double)*N);
f->vy=(double *) malloc(sizeof(double)*N);

59

5 MOLECULAR DYNAMICS SIMULATION

f->vz=(double *) malloc(sizeof(double)*N);
} else {

f->vz=NULL;
f->vy=NULL;
f->vx=NULL;

}
f->typ=(int*) malloc(sizeof(int)*N);
return f;

}
/* Read an XYZ -format frame from stream fp; returns the new frame.

Note the non -conventional use of the first line to indicate
whether or not the frame contains velocities and the comment
line to hold boxsize information. */

frametype * read_xyz_frame (FILE * fp) {
int N,i,j,hasvel =0;
double x, y, z, Lx, Ly, Lz, vx, vy, vz;
char typ[3], dummy [5];
char ln [255];
frametype * f = NULL;
if (fgets(ln ,255,fp)){

sscanf(ln,"%i %i\n",&N,& hasvel);
f = NewFrame(N,hasvel);
fgets(ln ,255,fp);
sscanf(ln,"%s %lf %lf %lf\n",dummy ,&f->Lx ,&f->Ly ,&f->Lz);
for (i=0;i<N;i++) {

fgets(ln ,255,fp);
sscanf(ln,"%s %lf %lf %lf %lf %lf %lf\n",

typ ,&f->rx[i],&f->ry[i],&f->rz[i],&vx ,&vy ,&vz);
if (hasvel) {

f->vx[i]=vx;
f->vy[i]=vy;
f->vz[i]=vz;

}
j=0;
while(strcmp(elem[j],"NULL")&& strcmp(elem[j],typ)) j++;
if (strcmp(elem[j],"NULL")) f->typ[i]=j;
else f->typ[i]=-1;

}
}
return f;

}

With this abstract data type, we no longer need to pass all parallel arrays as separate parameters;
we can instead just pass a pointer frametype*. For example, below is the function rij that computes
the minimum-image convention distance between particles i and j in a particular frame:

/* Compute scalar distance between particles i and j in frame f;
note the use of the minimum image convention */

double rij (frametype * f, int i, int j) {

60

5 MOLECULAR DYNAMICS SIMULATION

double dx, dy, dz;
double hLx =0.5*f->Lx,hLy =0.5*f->Ly,hLz =0.5*f->Lz;
dx=f->rx[i]-f->rx[j];
dy=f->ry[i]-f->ry[j];
dz=f->rz[i]-f->rz[j];
if (dx<-hLx) dx+=f->Lx;
if (dx> hLx) dx -=f->Lx;
if (dy<-hLy) dy+=f->Ly;
if (dy> hLy) dy -=f->Ly;
if (dz<-hLz) dz+=f->Lz;
if (dz> hLz) dz -=f->Lz;
return sqrt(dx*dx+dy*dy+dz*dz);

}

Using rij() it is then easy to update the RDF histogram:

/* An N^2 algorithm for computing interparticle separations
and updating the radial distribution function histogram. */

void update_hist (frametype * f, double rcut ,
double dr, int * H, int nbins) {

int i,j;
double r;
int bin;
for (i=0;i<f->N-1;i++) {

for (j=i+1;j<f->N;j++) {
r=rij(f,i,j);
if (r<rcut) {

bin=(int)(r/dr);
if (bin <0||bin >=nbins) {

fprintf(stderr ,
"Warning: %.3lf not on [0.0 ,%.3lf]\n",
r,rcut);

} else {
H[bin]+=2;

}
}

}
}

}

H is the histogram. One can see that the bin value is computed by first dividing the actual distance
between members of the pair by the resolution of the histogram, δr, and casting the result as an
integer. This resolution can be specified on the command-line when rdf.c is executed. Also notice
that the histogram is updated by 2, which reflects the fact that either of the two particles in the pair can
be placed at the origin. Also notice the implementation of the minimum image convention.

In the main() function of rdf.c, a simple block of code can read in a whole trajectory from a file
named by trajfile and store it in an array of frametype* pointers:

i=0;
fprintf(stdout ,"Reading %s\n",trajfile);

61

5 MOLECULAR DYNAMICS SIMULATION

fp=fopen(trajfile ,"r");
while (Traj[i++]= read_xyz_frame(fp));
nFrames=i-1;
fclose(fp);
if (! nFrames) {

fprintf(stdout ,"Error: %s has no data.\n",trajfile);
exit (-1);

}
fprintf(stdout ,"Read %i frames from %s.\n",nFrames ,trajfile);

Then a second block of code allocates, initializes, and computes the pair correlation histogram:

/* Adjust cutoff and compute histogram */
L2min=min(Traj[0]->Lx/2,min(Traj[0]->Ly/2,Traj[0]->Lz/2));
if (rcut >L2min) rcut=L2min;
nbins=(int)(rcut/dr)+1;
H=(int*) malloc(sizeof(int)*nbins);
for (i=0;i<nbins;i++) H[i]=0;
for (i=begin_frame;i<nFrames;i++)

update_hist(Traj[i],rcut ,dr,H,nbins);
nFramesAnalyzed=nFrames -begin_frame;

Note that the cutoff rcut may not exceed half a box length in any dimension. The number of histogram
bins is simply one plus the cutoff divided by the resolution dr. The variable begin_frame allows the
caller to gather statistics only after a certain number of frames in the trajectory in order to “ignore” initial
frames where the initial configuration is still “remembered”.

Finally, once the trajectory has been traversed and the histrogram computed, it is then normalized
by compute g(r) and save the result to a designated output file:

/* Normalize and output g(r) to the terminal */
/* Compute density , assuming NVT ensemble */
fp=fopen(outfile ,"w");
fprintf(fp,"# RDF from %s\n",trajfile);
fprintf(fp,"#LABEL r g(r)\n");
fprintf(fp,"#UNITS %s *\n",length_units);
/* Ideal -gas global density; assumes V is constant */
rho=Traj[0]->N/(Traj[0]->Lx*Traj[0]->Ly*Traj[0]->Lz);
for (i=0;i<nbins -1;i++) {

/* bin volume */
vb =4./3.* M_PI *((i+1)*(i+1)*(i+1)-i*i*i)*dr*dr*dr;
/* number of particles in this shell if this were

an ideal gas */
nid=vb*rho;
fprintf(fp,"%.5lf %.5lf\n",i*dr,

(double)(H[i])/(nFramesAnalyzed*Traj[0]->N*nid));
}
fclose(fp);
fprintf(stdout ,"%s created .\n",outfile);

(The variable length_units is a string that just labels the length units; by default, this is "sigma",
indicating LJ σ.)

62

5 MOLECULAR DYNAMICS SIMULATION

Now, let’s execute rdf from one of our 600,000-time-step simulations’ 6,001-frame trajectory, ignor-
ing the first 1,000 frames (100,000 time steps):

$ cd ~/dxu/chet580/instructional -codes/my_work/mdlj/set1
$ gcc -O5 -o rdf ../../../ originals/rdf.c -lm
$./rdf -t traj -rho0.90-rep0.xyz -dr 0.02 -rcut 3.5 \

-o rdf -rho0.90-rep0.dat -begin -frame 1000
Reading traj -rho0.90-rep0.xyz
Read 6001 frames from traj -rho0.90-rep0.xyz.
rdf -rho0.90-rep0.dat created.
$

Using the python program plot_rdf.py, we can generate a plot of this RDF (Fig. 17:

$ python ../../../ originals/plot_rdf.py -i rdf -rho0.90-rep0.dat \
-o rdf -rho0.90-rep0.png

Figure 17: Radial distribution function of a Lennard-Jones fluid at reduced density 0.90, N = 216, cutoff of 3.5,
NVE MD.

This g(r) shows a peak at about 21/6σ that corresponds to the LJ well, indicating that there is a
dense nearest-neighbor shell out to about 1.5 σ. How dense? We can use g(r) to count particles within
a distance r from a central atom:

n (r) = ρ

∫ r

0

∫ π

0

∫ 2π

0
g
(
r′
) (
r′
)2

sin θdr′dθdφ = 4πρ

∫ r

0

(
r′
)2
g
(
r′
)
dr′ (158)

This integration is enabled in plot_rdf.py via the -rho and -R flags:

$ python ../../../ originals/plot_rdf.py -i rdf -rho0.90-rep0.dat \
-o rdf -rho0.90-rep0.png -rho 0.9 -R 1.5

n=12.335

This indicates the nearest neighbor shell is pretty well packed; spherical close-packing would be exactly
12.

63

5 MOLECULAR DYNAMICS SIMULATION

5.4 Case Study 3: Transport Properties: The Self-Diffusion Coefficient
This Case Study combines elements of Case Studies 5 and 6 in F&S, which are unfortunately

incomplete in their description. The purpose of this Case Study is to demonstrate how one computes
a self-diffusion coefficient, D , from an MD simulation of a simple Lennard-Jones liquid. There are
two means to computing D : (1) the mean-squared displacement (“MSD”)

〈
r2
〉

(t), and (2) the velocity
autocorrelation function, VACF(t). The approaches are equivalent in the sense that the MSD is the
integral representation of the VACF; the former is termed the “Einstein” approach, while the latter is the
“Green-Kubo” approach [8].

The self-diffusion coefficient governs the evolution of concentration, c, (or number density) accord-
ing to a generalized transport equation:

∂c

∂t
= D∇2c (159)

Einstein showed (details in text) that D is related to the mean-squared displacement,
〈
r2
〉
:

∂
〈
r2
〉

∂t
= 6D (160)

At long times, D should be independent of time; hence〈
r2
〉

= lim
t→∞

6Dt (161)

We can compute
〈
r2
〉
, and therefore estimate D , easily using MD simulation. There is, however, a

very important consideration concerning periodic boundary conditions. Recall that, during integration,
immediately after the position update, we test to see if the update has taken the particle outside of
the primary box. If it has, we simply shift the particle’s position by a box length in the appropriate
dimension and direction. The displacement of the particle during this step is not a box length, but if
you consider just the coordinates as they appear in the output, you would think that it is. It is therefore
important that we work with unfolded coordinates when computing mean-squared displacement. This
is not adequately explained in the text, so we cover it in some detail here.

“Unfolding” coordinates in a simulation with periodic boundaries requires that we keep track of
how many times each particle has crossed a boundary. The code mdlj.c allows output of unfolded
coordinates in the trajectory output using the -uf switch on the command line. Now, generally the array
rx[] always contains the periodically shifted coordinates, but we can easily generate the unfolded
coordinates at any time (say, upon output) by performing the following operation:

rxu = rx[i]+ix[i]*L;

This is because ix[] contains a tally of the number of times periodic crossings in the x direction have
occurred: +1 is added to the tally every time a particle’s x position exceeds L and is wrapped back in
by subtracting L, and -1 is added to the tally every time a particle’s x position is below 0 and is wrapped
back in by adding L. Here, L is the box length (assumed cubic).

The program msd.c computes the MSD from a trajectory with unfolded coordinates using a con-
ventional, straightforward algorithm. The C-code for this algorithm appears below. M is the number of
“frames” in the trajectory, and N is the number of particles.

〈
r2
〉

(t) is computed by considering the
change in particle position over an interval of size t. Any frame in the trajectory can be considered an
origin for any interval size, provided enough frames come after it in the trajectory. This means that we
additionally average over all possible time origins. dt is a variable that loops over allowed time intervals.
cnt[] counts the number of time origins for a given interval. sd[] is the array in which we accumulate
squared displacement at each time interval, and has M elements, one for each allowed interval.

64

5 MOLECULAR DYNAMICS SIMULATION

/* Compute the mean -squared displacement using
the straightforward algorithm */

fprintf(stdout ,"# computing MSD ...\n"); fflush(stdout);
for (t=begin_frame;t<M;t++) {

for (dt=1;(t+dt)<M;dt++) {
cnt[dt]++; /* number of origins for interval length dt */
for (i=0;i<Traj[0]->N;i++) {

sd[dt] += rij2_unwrapped(Traj[t+dt],i,Traj[t],i,1);
}

}
}

The function rij2_unwrapped(fi,i,fj,j,1) very simply computes the squared displacement be-
tween particle i in frame fi and particle j in frame fj:

double rij2_unwrapped (frametype * fi, int i,
frametype * fj, int j, int com_corr) {

double dx, dy, dz;
dx=fi->rx[i]-(com_corr?fi->cx:0)-fj->rx[j]+(com_corr?fj->cx:0);
dy=fi->ry[i]-(com_corr?fi->cy:0)-fj->ry[j]+(com_corr?fj->cy:0);
dz=fi->rz[i]-(com_corr?fi->cz:0)-fj->rz[j]+(com_corr?fj->cz:0);
return dx*dx+dy*dy+dz*dz;

}

The parameter com_corr removes the center of mass drift from the displacement; the center of mass
should not move in NVE, but we will use this code for trajectories in which the COM does diffuse. The
center of mass of a frame is part of the frametype data type used in msd.c, and it’s computed when
the frame is read in.

The code fragment below completes the averaging, and outputs the total mean-squared displace-
ment.

fp=fopen(outfile ,"w");
fprintf(fp,"# MSD from %s\n",trajfile);
fprintf(fp,"#LABEL time msd\n");
fprintf(fp,"#UNITS %s %s^2\n",time_units ,length_units);
for (t=0;t<M-begin_frame;t++) {

sd[t] /= cnt[t]?(Traj[0]->N*cnt[t]):1;
fprintf(fp,"% .5lf % .8lf\n",

t*traj_interval*md_time_step ,sd[t]);
}
fclose(fp);

Fig. 18 shows MSD vs time from 60,000-step MD simulations at various densities in which frames
are saved at intervals of 10 time-steps. In these simulations, the density was constant and there were
216 particles, with velocities initialized at 0.7. The figure shows the data plotted two ways: MSD vs. t on
the left, and MSD/(6t) vs 1/t on the right. The program msd can post-process an unwrapped trajectory
file to generate the MSD:

$./msd -t traj -rho0.90-rep0.xyz -traj -interval 10 \
-o msd -rho0.90-rep0.dat -begin -frame 1000

65

5 MOLECULAR DYNAMICS SIMULATION

Figure 18: Mean-squared displacement (MSD) vs. simulation time (in reduced LJ units) for a 216-particle,
60,000-step NVE MD simulations at various values of ρ. Blue curves are MD data and black dashed lines are fits
to the Einstein relation to extract D . All simulations had velocities initialized at T = 0.7.

Repeating this process for several densities and several replicas per density builds a nice dataset. MSD
at each density was averaged over replicas and plotted using plot_msd.py:

$ python ../../../ originals/plot_msd.py -i msd -rho0.50-mean.dat \
-i msd -rho0.60-mean.dat -i msd -rho0.70-mean.dat \
-i msd -rho0.80-mean.dat -i msd -rho0.90-mean.dat \
-o msd -rho -T0.70. png -lowt 1

msd -rho0.50-mean.dat 0.18750243355919102
msd -rho0.60-mean.dat 0.17188252756031633
msd -rho0.70-mean.dat 0.11801146782479009
msd -rho0.80-mean.dat 0.08188412712076683
msd -rho0.90-mean.dat 0.0645241901384243

The parameter -lowt is the lower time limit beyond which the data is fit to calculate D . Values of D are
output here.

You can see that the MSD transitions from a short-time regime where MSD ∝ t2 to a long-time
regime where MSD ∝ t. That short-time region displays “ballistic” behavior, and on those time scales
particles move ballistically (with constant velocity) between collisions with other particles; you can see
by the value of MSD of about 0.02 that they are moving only about 0.1 particle diameters or so before
colliding. On the longer, “diffusive” timescales, we can see the expected behavior.

The velocity autocorrelation function route to the diffusion constant begins with the realization that
one can reconstruct the displacement of a particle over a time interval t by simply integrating its velocity:

∆r =

∫ t

0
v(t′)dt′ (162)

66

5 MOLECULAR DYNAMICS SIMULATION

So, the mean squared displacement can be expressed

〈
r2
〉

=

〈(∫ t

0
v(t′)dt′

)2
〉

(163)

=

∫ t

0

∫ t

0
dt′dt′′

〈
v(t′) · v(t′′)

〉
(164)

= 2

∫ t

0

∫ t′

0
dt′dt′′

〈
v(t′) · v(t′′)

〉
. (165)

The third equality arises because we can swap t′ and t′′. The quantity 〈v(t′) · v(t′′)〉 is the velocity
autocorrelation function. This is an example of a Green-Kubo relation; that is, a relation between a
transport coefficient, and an autocorrelation function of a dynamical variable. Eq. 160 then leads to

D =
1

3

∫ ∞
0

〈
v(t′) · v(t′′)

〉
dt (166)

So, the second route to computing D requires that we numerically integrate 〈v(t′) · v(t′′)〉 out to very
large times. How large? First, let’s try to understand the behavior of 〈v(t′) · v(t′′)〉.

In three dimensions, we compute this by computing the components and adding them together, as
we did for mean-squared displacement:〈

v(t′) · v(t′′)
〉

=
〈
vx(t′)vx(t′′)

〉
+
〈
vy(t

′)vy(t
′′)
〉

+
〈
vz(t

′)vz(t
′′)
〉

(167)

The code to compute the VACF is essentially identical to that for the MSD, with the exception that the
quantity we accumulate is the dot product of velocity vectors:

/* Compute velocity dot product between particles i and j in
frame fi and fj, respectively; com_corr removes center of
mass motion */

double vij2 (frametype * fi, int i, frametype * fj , int j,
int com_corr) {

double dx, dy, dz;
dx=(fi->vx[i]-(com_corr?fi->cvx :0))*(fj->vx[j]-(com_corr?fj->cvx :0));
dy=(fi->vy[i]-(com_corr?fi->cvy :0))*(fj->vy[j]-(com_corr?fj->cvy :0));
dz=(fi->vz[i]-(com_corr?fi->cvz :0))*(fj->vz[j]-(com_corr?fj->cvz :0));
return dx+dy+dz;

}

Fig. 19 shows the VACF for the same simulation we showed for the MSD above. The right panel is
a zoom in by a factor of 20, which allows us to resolve the part of the VACF that dips below zero at
short times; this is the same time scale on which we have ballistic motion. The negative VACF indicates
“bounce-back” from collisions. That figure was generated using plot_vacf.py, which also applies
Eq. 166 using scipy.integrate.simpson() to compute D ’s:

$ python ../../../ originals/plot_vacf.py -i vacf -rho0.50-mean.dat \
-i vacf -rho0.60-mean.dat -i vacf -rho0.70-mean.dat \
-i vacf -rho0.80-mean.dat -i vacf -rho0.90-mean.dat \
-o vacf -rho -T0.70. png -z 20

vacf -rho0.50-mean.dat 0.16226338888888892
vacf -rho0.60-mean.dat 0.16724698888888884

67

5 MOLECULAR DYNAMICS SIMULATION

vacf -rho0.70-mean.dat 0.11846137777777778
vacf -rho0.80-mean.dat 0.08435750000000004
vacf -rho0.90-mean.dat 0.0705403444444444

These values agree only weakly with the values computed via fitting to MSD, but either is considered
“correct”.

Figure 19: Velocity autocorrelation function (VACF) vs. simulation time (in reduced LJ units) for 216-particle,
60,000-step NVE MD simulations at ρ = 0.5 - 0.9. Right panel is just a close-up of the left panel showing the
short-time-scale “bounce-back” behavior.

68

6 ENSEMBLES

6 Ensembles
6.1 Monte Carlo Simulations in the Isothermal-Isobaric and Grand Canonical Ensembles
6.1.1 Isothermal-Isobaric

In this section, we consider how to conduct Monte Carlo simulation in ensembles other than the
canonical ensemble. In deriving the partition function for the canonical ensemble (Eq. 46), we imagined
our sytem of constant N , V , and T in thermal contact with a large reservoir. This thermal contact
allowed the system and reservoir to exchange energy such that the system remained at constant T ,
and what resulted was the Boltzmann factor. In Section 5.4.1, F&S explain the case when we have the
reservoir and the system both thermally and mechanically coupled. The mechanical coupling allows the
volume of the system to change such that the pressure in the system is the same as the reservoir, which
is again considered as an inifinite ideal gas. In addition to thermostatting our system, the reservoir acts
as a barostat.

First, for convenience, we express the set of coordinates, rN , scaled by the box length, L, as sN .
The partition function in the NPT ensemble is then

Q (N,P, T) =
βP

Λ3NN !

∫
dV V N exp (−βPV)

∫
dsN exp

[
−βU

(
sN ;L

)]
(168)

The free energy associated with this ensemble is the Gibbs free energy:

G = −kBT lnQ (N,P, T) (169)

Now, compared to the canonical ensemble, in the NPT ensemble, volume is an additional degree
of freedom. We need the probability distribution to include volume:

N
(
V ; sN

)
∝ V N exp (−βPV) exp

[
−βU

(
sN ;L

)]
(170)

= exp
{
−β
[
U
(
sN , V

)
+ PV −Nβ−1 lnV

]}
(171)

We can use this new Boltzmann factor in an acceptance rule for a Monte Carlo trial move involving a
simple volume change from V to V + ∆V , where ∆V is randomly chosen from [−∆Vmax,∆Vmax]:

acc (o→ n) = min
(
1, exp

{
−β
[
U
(
sN , V ′

)
−U

(
sN , V

)
+ P

(
V − V ′

)
−Nβ−1 ln

(
V ′/V

)]})
(172)

We can also consider trial move that changes the logarithm of the box size from lnV to lnV +
∆ (lnV). In this case, the integral of V N over dV is re-expressed as an integral of V N+1 over d lnV ,
and the acceptance rule is the same as the one above except for a factor of (N + 1) multiplying β−1,
instead of N .

The C-code mclj_npt.c implements an NPT MC simulation of the Lennard-Jones liquid using both
particle displacements and log-V displacements. For each cycle, there is a 1/(N + 1) probability that a
trial move is a volume displacement. The trial move generates a random displacement, computes a new
box length, rescales all particle positions, scales the cutoff radius, and recomputes the tail corrections
and shift, if applicable. If the Metropolis criterion is not met after a random number is selected, then all
of these operations are undone. Otherwise, the new box size with the newly scaled particle positions is
kept. The particle displacement algorithm is the same as in mclj.c.

As an exercise, you can use the code to regenerate Figure 5.3 in the text, which is again a slice
through the phase diagram of the Lennard-Jones fluid at T = 2.0. This temperature is above the critical
tempeerature, so we do not anticipate a phase transition at the pressures investigated. However, we
saw that when we considered T = 0.9 using the NVT MC simulation, negative pressures were predicted,
indicating that the system would have liked to phase separate but couldn’t due to its fixed density and

69

6 ENSEMBLES

finite size. That is, at the density specified, there might not be enough particles to “nucleate” the denser
of the two phases. NPT simulations in principle offer a way around that by allowing the system density
to fluctuate.

I ran the code with N = 108 particles for 106 cycles (Note that I have changed my definition of
“cycle”. Before, one “cycle” was N moves; now it is a single move. This distinction isn’t important
for now, but I thought you’d like to be made aware.) The log-volume maximum displacement was set
at 0.25, and the maximum particle displacement varied from 0.3 for P , to 0.5 at the lowest value of
P . You can see from Fig. 20 that the data at T = 2.0 is equally well reproduced here as it was using
conventional NVT MC (Fig. 13). However, for T = 0.9, we notice that the densities which arise are
clearly indicate a high-density phase is prevalent. (Indeed, we saw in NVT simulations that forcing a
T=0.9 system to exist at densities below about 0.75 resulted in negative pressures!) This code also
computes the pressure from the virial, and the measured pressure and imposed pressures agreed, as
you can see from the right-hand panel in Fig. 20.

Figure 20: (Left) Pressure vs. density in a Lennard-Jones fluid at two temperatures computed using NPT MC
simulation of systems of N = 108 particles. Each point is the average of three independent simulations, all
initialized at a density of 0.5. (Right) Measured pressure vs. requested pressure for all simulations.

For temperatures near the critical temperature, we would expect the fluctuations in density to be
maximum. As an exercise, you can modify mclj_npt.c to compute the average fluctuations in ρ.

6.1.2 Grand Canonical
So we see that volume exchanges with an ideal gas reservoir can be used to fix the pressure of a

test system. Similarly, particle exchanges with an ideal gas reservoir can be used to fix the chemical
potential µ of a test system. Chemical potential is defined as the change in free energy with particle
number:

µ =
∂F

∂N
(173)

Thus, as reciprocal temperature, β, is conjugate to entropy, S, and pressure, P , is conjugate to volume,
V , chemical potential, µ, is conjugate to number of particles, N . An ensemble in which µ, V , and T are
fixed is referred to as the “grand canonical” ensemble.

70

6 ENSEMBLES

For an ideal gas, we know that the NVT partition function is given by

Qi.g. (N,V, T) =
V N

Λ3NN !
(174)

Because F = β−1 lnQ, it is straightforward to show for the ideal gas that

βP = ρ (175)

and
µi.g. = kBT ln Λ3ρ = µ0 + kBT lnβP (176)

where
µ0 ≡ kBT ln Λ3. (177)

The conventional definition of the excess chemical potential, or the difference in chemical potential of
the material of interest and an ideal gas at the same density, is

µex = µ− µi.g. = µ− µ0 − kBT lnβP (178)

To keep things clean, we will specify a relative chemical potential defined as

µ′ ≡ µ− µ0 (179)

giving the definition of the excess as
βµex ≡ βµ′ − lnβP (180)

To implement a grand canonical MC simulation, the basic idea is that we allow our system to interact
with an ideal gas system at a fixed P (which is related to a fixed µ, as discussed above) by exchanging
particles. The appropriate probability density is

NµV T

(
sN ;N

)
∝ exp (βµN)V N

Λ3NN !
exp

[
−βU

(
sN
)]

=
V

N
exp

[
−β
(
U − µ′N

)]
(181)

To implement a random walk with this probability distribution, in addition to the normal particle
displacement moves, we also have insertion and removal of particles with appropriate acceptance
ratios:

acc (N → N + 1) = min

[
1,

V

N + 1
exp

{
−β
[
U (N + 1)−U (N)− µ′

]}]
(182)

acc (N → N − 1) = min

[
1,
N

V
exp

{
−β
[
U (N − 1)−U (N) + µ′

]}]
(183)

So, we can specify µ′ of the ideal gas bath, system volume V and temperature T , and conduct
a grand canonical MC simulation from which we can observe measure pressure, density, and excess
chemical potential in our system of interest. The code mclj_muvt.c implements grand canonical MC
for the Lennard-Jones fluid.

It is instructive to run this code with various values of µ′. For example, at T = 2.0 and µ′ = -2.0, an
initially 512-particle system at ρ = 0.6 becomes a 436-particle systems at ρ = 0.54:

$./ mclj_muvt -N 512 -rho 0.6 -T 2 -mu -2 \
-disp -wt 0.5 -nc 50000 -dr 0.5 -s 124521
-ne 1000 -rc 3.5 -prog 0

71

6 ENSEMBLES

muVT MC Simulation of a Lennard -Jones fluid
L = 9.48505; rho0 = 0.60000; mu’ = -2.00000; N0 = 512; rc = 3.50000
nCycles 50000 , nEq 1000, seed 124521 , dR 0.50000
NPT Metropolis Monte Carlo Simulation of the Lennard -Jones fluid in the Grand Canonical Ensemble

Number of cycles: 51000
Maximum particle displacement: 0.50000
Displacement weight: 0.50000
Temperature: 2.00000
Relative chemical potential: -2.00000
Initial number of particles: 512
Tail corrections used? Yes
Shifted potentials used? No
Results:
Final number of particles: 408
Displacement attempts: 26058
Insertion attempts: 12384
Deletion attempts: 12558
Acceptance ratio , ptcl displ: 0.47981
Acceptance ratio , insertion: 0.08648
Acceptance ratio , deletion: 0.09357
Overall acceptance ratio: 0.28920
Energy/particle: -3.31911
Density: 0.50063
Computed pressure: 0.96980
Excess chemical potential: -0.61622
Program ends.

Why does the number of particles go down? The system is being asked to find an equilibrium in
which the chemical potential is negative, yet we are apparently starting it at a state where it is more
positive, so the system sheds particles. That is, our initial density corresponds to a system of higher
chemical potential than what we are asking for. Conversely, if initialize at a lower density, say 0.4, then
we see the number of particles increases:

$./ mclj_muvt -N 512 -rho 0.4 -T 2 -mu -2 \
-disp -wt 0.5 -nc 50000 -dr 0.5 -s 124521
-ne 1000 -rc 3.5 -prog 0

muVT MC Simulation of a Lennard -Jones fluid
L = 10.85767; rho0 = 0.40000; mu’ = -2.00000; N0 = 512; rc = 3.50000
nCycles 50000 , nEq 1000, seed 124521 , dR 0.50000
NPT Metropolis Monte Carlo Simulation of the Lennard -Jones fluid in the Grand Canonical Ensemble

Number of cycles: 51000
Maximum particle displacement: 0.50000
Displacement weight: 0.50000
Temperature: 2.00000
Relative chemical potential: -2.00000
Initial number of particles: 512
Tail corrections used? Yes

72

6 ENSEMBLES

Shifted potentials used? No
Results:
Final number of particles: 598
Displacement attempts: 26058
Insertion attempts: 12384
Deletion attempts: 12558
Acceptance ratio , ptcl displ: 0.54885
Acceptance ratio , insertion: 0.12766
Acceptance ratio , deletion: 0.11905
Overall acceptance ratio: 0.34075
Energy/particle: -2.62249
Density: 0.44318
Computed pressure: 0.88387
Excess chemical potential: -0.37246
Program ends.

Note that while these two runs purportedly aim for the same equilibrium state, they don’t converge
there. The second run converges to a lower pressure and more positive excess chemical potential than
the first run does. This is partially due to the fact that they are different sizes so there are random
errors, but it is also due to the fact that grand canonical MC simulations take a relatively long time to
reach equilibrium compared to NVT MC. In practice, it can take many hundreds of thousands of cycles
to generate reproducible measurements in µVT MC. Fig. 21 shows isotherms at T = 2.0 of pressure
and excess chemical potential for the LJ fluid computed using mclg_muvt.c. These were computed
using three independent trials per data point. This matches Fig. 5.8 in F&S [1].

Figure 21: Isotherms of pressure and excess chemical potential at T = 2.0 from µVT MC simulation of the
Lennard-Jones fluid. Each point is the average of three independent, 600,000-move simulations.

73

6 ENSEMBLES

6.2 Molecular Dynamics at Constant Temperature
Conventional MD simulation conserves total energy; hence, the time averages computed from MD

simulation, if it is long enough, are equivalent to ensemble averages computed from the microcanonical
ensemble. The flexibility of MD is greatly enhanced by noting that it is not restricted to NVE. There exist
techniques by which MD can simulate in the NVT or NPT ensembles as well. We will consider some
popular temperature control schemes, and one popular pressure control scheme, in this section.

There are essentially three ways to control the temperature in an MD simulation:
1. Velocity rescaling;
2. Stochastic forces and/or velocities; and
3. “Extended Lagrangian” formalisms.
Each of these classes of schemes has advantages and disadvantages, depending on the applica-

tion. In the following subsections, we consider several examples of thermostats, and attempt to discuss
their advantages and drawbacks. A simple barostat is also described in the last section.

6.2.1 Temperature Fluctuations in the Canonicial Ensemble
Before considering how to fiddle with particle velocities or forces to enforce constant temperature,

it is worth considering what statistical thermodynamics has to say about temperature. When we have
direct knowledge of instantaneous particle velocities, we know that the kinetic energy is

K =
N∑
i=1

∑
α∈{x,y,z}

p2
i,α

2m
≡

3N∑
j=1

p2
j

2m
(184)

where we recognize that all momentum components are independent variables. We also know that
temperature (in reduced units) is directly proportional to kinetic energy:

3

2
NT = K (185)

With this equivalence, we can consider the “instantaneous” temperature as

T =
2

3N

3N∑
j=1

p2
j

2m
(186)

Since momenta must fluctuate it is necessarily the case that instantaneous temperature also fluctuates.
Let’s see how much.

First, since all momenta are independent, it follows from the definition of the canonical partition
function that a particle momentum component pj follows the Maxwell-Boltzmann distribution:

ρ(pj) =

(
β

2πm

) 3
2

exp

(
−
βp2

j

2m

)
(187)

We can characterize fluctuations in p2
j by dividing its variance σp2j to the square of its average 〈p2

j 〉2.
The variance is defined

σp2j
= 〈p4

j 〉 − 〈p2
j 〉 (188)

Using the Maxwell-Boltzmann distribution:

〈p2
j 〉 =

∫ ∞
−∞

dpjp
2
j exp

(
−
βp2

j

2m

)
=

3m

β
(189)

74

6 ENSEMBLES

and

〈p4
j 〉 =

∫ ∞
−∞

dpjp
4
j exp

(
−
βp4

j

2m

)
= 15

(
m

β

)2

(190)

Thus,
〈p4
j 〉 − 〈p2

j 〉
〈p2
j 〉

=
2

3
. (191)

Now, let’s compute fluctuations in the instantaneous temperature. First, the average:

〈T 〉 =
2

3N

3N∑
j=1

〈p2
j 〉

2m
=

2

3N

3N

2m
〈p2
j 〉 =

〈p2
j 〉
m

(192)

Now the variance, 〈T 2〉 − 〈T 〉, starting with 〈T 2〉:

〈T 2〉 =

(
2

3N

)2
〈 3N∑

j=1

p2
j

2m

(3N∑
k=1

p2
k

2m

)〉
(193)

=

(
2

3N

)2∑
jk

〈p2
jp

2
k〉

(2m)2
(194)

=

(
2

3N

)2
[

9N
〈p4
j 〉

(2m)2
+ 9N(N − 1)

〈p2
j 〉2

(2m)2

]
(195)

=
1

(mN)2

[
N〈p4

j 〉+N(N − 1)〈p2
j 〉2
)
] (196)

Note that in going from Eq. 195 to 196, we note the fact that

〈p2
jp

2
k〉 = 〈p2

j 〉〈p2
k〉 = 〈p2

j 〉2 (197)

since momenta are not correlated to each other. Putting these together:

〈T 2〉 − 〈T 〉2

〈T 〉2
=

1
(mN)2

[
N〈p4

j 〉+N(N − 1)〈p2
j 〉2
)

]−
(
〈p2j 〉
m

)2

(
〈p2j 〉
m

)2 (198)

=
N〈p4

j 〉+N(N − 1)〈p2
j 〉2 −N2〈p2

j 〉2

N2〈p2
j 〉2

(199)

=
1

N

〈p4
j 〉 − 〈p2

j 〉2

〈p2
j 〉2

=
2

3N
(200)

So clearly temperature fluctuates in the canonical ensemble. Of course, in the thermodynamic limit
(N → ∞), these fluctuations vanish and we perceive a “constant” temperature, but in a simulation in
which we resolve the momenta of a set of N particles, we must observe that T fluctuations as shown
above. We can use this fact to decide whether or not a temperature-control scheme in MD is actually
resulting in sampling the canonical ensemble.

75

6 ENSEMBLES

6.2.2 Velocity Rescaling: Isokinetics and the Berendsen Thermostat
“Isokinetics” refers to altering velocities on the fly to keep kinetic energy (and therefore temperature)

constant. The relationship between kinetic energy and temperature results from the application of the
equipartition theorem to velocity (or, equivalently, momentum) degrees of freedom:

3

2
NkBT =

1

2

∑
i

miv
2
im =

∑
i

p2
i

2m
(201)

Scaling every particle velocity by a factor λ will yield a new temperature T ′:

λ =
√

(T ′/T) (202)

An isokinetic thermostat computes λ and rescales velocities at every time step. Such a thermostat can-
not be used to conduct a simulation in the canonical ensemble, since it totally suppresses the required
temperature fluctuations. However, isokinetics is perfectly fine to use in a warmup or initialization phase
in order to prevent numerical instabilities.

The code mdlj_isok.c illustrates implementation of an isokinetic thermostat for constant-T sim-
ulation of a Lennard-Jones fluid. The implementation uses a two parameters, isoKT and isoKi, that
specify the desired temperature and the number of time steps between applications of the rescaling. It
is worth asking whether or not occasional velocity rescaling (rather than at every step) might allow us to
preserve the correct statistics. Fig. 22 shows traces of temperature vs time for three MD simulations of
the Lennard-Jones fluid with 512 particles at a density of 0.50. Each simulation used a different interval
size i. The quantity N 〈T

2〉−〈T 〉2
〈T 〉2 is computed for each set and values are shown in the legend. For pure

canonical statistics, we know this should be 2/3; clearly, isokinetics even at a very modest frequency
utterly fails to preserve canonical statistics.

Figure 22: Temperature vs time (output every time step) for three isokinetic MD simulations of the LJ fluid
at density 0.5 with 512 particles. i indicates the number of steps between velocity rescalings; the setpoint
temperature is 3.0, and all simulations were initialized with velocities consistent with a temperature of 2.0.

Berendsen realized that velocity scaling could be reformulated to model energy exchange with a

76

6 ENSEMBLES

bath at constant T [9]. His scale factor is defined as

λ =

[
1 +

∆t

τT

(
T0

T
− 1

)] 1
2

(203)

Here, T0 is the setpoint temperature, ∆t is the integration time step, and τT is a constant called the
“rise time” of the thermostat. It describes the strength of the coupling of the system to a hypothetical
heat bath. The larger τT , the weaker the coupling; in other words, the larger τT , the longer it takes to
achieve a given T0 after an instantaneous change from some previous T0.

The code mdlj_ber.c implements the Berendsen thermostat. The two relevant parameters are
berT, the setpoint temperature, and ber_tau, the rise time. Fig. 23 shows traces of temperature vs
time for three MD simulations of the Lennard-Jones fluid with 512 particles at a density of 0.50, with
temperature controlled using the Berendsen thermostat with various values of τ . Larger τ clearly
results in longer approach times to the setpoint temperature. Note also that the relative fluctuations of
the temperature reported indicate that canonical statistics are not being held.

Figure 23: Temperature vs time (output every time step) for three Berendsen-thermostatted MD simulations of
the LJ fluid at density 0.5 with 512 particles. τ indicates the rise time; the setpoint temperature is 3.0, and all
simulations were initialized with velocities consistent with a temperature of 2.0.

Though relatively simple, velocity scaling thermostats are not recommended for use in production
MD runs because they do not strictly conform to the canonical ensemble.

6.2.3 Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics
The Andersen Scheme. Perhaps the simplest thermostat which does correctly sample the NVT en-
semble is due to Andersen [10]. Here, at each step, some prescribed number of particles is selected,
and their momenta (actually, their velocities) are drawn from a Gaussian distribution at the prescribed
temperature (otherwise known as the Maxwell-Boltzmann distribution):

P(p) =

(
β

2πm

)3/2

exp
[
−βp2/ (2m)

]
(204)

This is intended to mimic collisions with bath particles at a specified T . The strength of the coupling to
the heat bath is specified by a collision frequency, ν. For each particle, a random variate is selected

77

6 ENSEMBLES

between 0 and 1. If this variate is less than ν∆t, then that particle’s momenta are reset.
The code mdlj_and.c implements the Andersen thermostat for the Lennard-Jones fluid. The two

relevant parameters are and_T, the setpoint temperature, and and_nu, the rise time. Fig. 24 shows
traces of temperature vs time for three MD simulations of the Lennard-Jones fluid with 512 particles
at a density of 0.50, with temperature controlled using the Andersen thermostat with various values of
collision frequency ν. Larger ν results in longer approach times to the setpoint temperature, but it is also
clear that for these values of ν, the Andersen thermostat acts much more quickly than the Berendsen
thermostat. Note also that the relative fluctuations of the temperature reported indicate that canonical
statistics are in fact being held.

Figure 24: Temperature vs time (output every time step) for three Berendsen-thermostatted MD simulations of
the LJ fluid at density 0.5 with 512 particles. τ indicates the rise time; the setpoint temperature is 3.0, and all
simulations were initialized with velocities consistent with a temperature of 2.0.

Although temperature fluctuations match the canonical ensemble, the Andersen thermostat de-
stroys momentum transport because of the random reassignment of velocities; hence, there is no
continuity of momentum in an Andersen LJ fluid, and therefore no proper D or viscosity. Fig. 6.3 in
Frenkel & Smit clearly shows that D , if measured from an Andersen MD run, is incorrect.
The Langevin thermostat. In the “Langevin” thermostat, at each time step all particles receive a
random force and have their velocities lowered using a constant friction. [11] The average magnitude of
the random forces and the friction are related in a particular way, which guarantees that the “fluctuation-
dissipation” theorem is obeyed, thereby guaranteeing NVT statistics.

In this formalism, the particle-i equation of motion is modified:

mr̈i = −∇iU −mΓṙi + Wi (t) (205)

Here, Γ is a friction coefficient with units of τ−1, and Wi is a random force that is uncorrelated in time
and across particles, with a mean given by〈

Wi (t) ,Wj

(
t′
)〉

= δijδ
(
t− t′

)
6kBmTΓ (206)

The code mdlj_lan.c implements the Langevin thermostat. The two relevant parameters are lanT
, the setpoint temperature, and lan_friction, the friction Γ. The two major elements are a force
initialization at each time step that adds in the random forces, W, and a slight modification to the

78

6 ENSEMBLES

update equations in the integrator to include the effect of Γ. Note that the initialization of forces to zero
in the force routine has been removed.

Fig. 25 shows temperature vs time for several MD simulations of a 512-particle LJ fluid at a density
of 0.5; the upper plot shows data from runs with ∆t=10−3, and the lower plot ∆t=10−2, each showing
four values of Γ. Relative temperature fluctuations indicate weak agreement with canonical statistics
that improves for the lower values of ∆t.

Figure 25: Temperature vs time (output every time step) for eight Langevin-thermostatted MD simulations of
the LJ fluid at density 0.5 with 512 particles. Γ indicates the friction; the setpoint temperature is 3.0, and all
simulations were initialized with velocities consistent with a temperature of 2.0. Upper plot shows ∆t of 0.001,
lower 0.01.

One advantage of the Langevin thermostat (and to a limited extent, the Andersen thermostat and
other stochastic-based thermostats) is that we can get away with a larger time step than in NVE sim-
ulations. At a density of ρ = 0.8442 and a mean temperature T = 1.0, an NVE simulation is unstable
for time-steps above about ∆t = 0.004. We can, however, run a Langevin dynamics simulation with a
friction Γ = 1.0 stably with a time-step as large as ∆t = 0.01 or even higher. This has proven invaluable
in simulations of more complicated systems that simple liquids, namely linear polymers, which have
very long relaxation times. MD with the Langevin thermostat is the method of choice for equilibrating

79

6 ENSEMBLES

samples of liquids of long bead-spring polymer chains.
Of course, the drawback of most stochastic thermostats (one exception is discussed next) is that

momentum transfer is destroyed. So again, it is unadvisable to use Langeving or Andersen thermostats
for runs in which you wish to compute diffusion coefficients. The recommendation stands: use NVE to
compute properties, and use thermostats for equilibration only.
The Dissipative Particle Dynamics thermostat. The DPD thermostat [12, 13] adds pairwise random
and dissipative forces to all particles, and has been shown to preserve momentum transport. Hence, it
is the only stochastic thermostat so far that should even be considered for use if one wishes to compute
transport properties.

The DPD thermostat is implemented by slight modification of the force routine to add in the pairwise
random and dissipative forces. For the ij pair, the dissipative force is defined as

fDij = −γωD (rij) (vij · r̂ij) r̂ij (207)

Here, γ is a friction coefficient, ω is a cut-off function for the force as a function of the scalar distance
between i and j which simply limits the interaction range of the dissipative (and random) forces, vij =
vi − vj is the relative velocity of i to j, and r̂ij = rij/rij is the unit vector pointing from j to i. The
random force is defined as

fRij = σωR (rij) ζij r̂ij (208)

Here, σ is the strength of the random force, ωR is a cut-off, and ζij is a Gaussian random number with
zero mean and unit variance, and ζij = ζji.

The update of velocity uses these new forces:

vi (t+ ∆t) = vi (t)− ∆t

m
∇iU +

∆t

m
fDi +

√
∆t

m
fRi (209)

where

fDi =
∑
j 6=i

fDij (210)

fRi =
∑
j 6=i

fRij (211)

The parameters γ and σ are linked by a fluctuation-dissipation theorem:

σ2 = 2γkBT (212)

So, in practice, one must specify either γ or σ, and then a setpoint temperature, T , in order to use the
DPD thermostat.

The cutoff functions are also related:

ωD (rij) =
[
ωR (rij)

]2
(213)

This is the only real constraint on the cutoffs; we are otherwise allowed to use any cutoff we like. The
simplest uses the cutoff radius of the pair potential, rc:

ω (r) =

{
1 r < rc
0 r > rc

(214)

80

6 ENSEMBLES

Note that, with this choice,
[
ωR (rij)

]2 = ωR (rij) = ωD (rij) = ω.
The code mdlj_dpd.c implements the DPD thermostat in an MD simulation of the Lennard-Jones

liquid. The major changes (compared to mdlj.c) are to the force routine, which now requires several
more arguments, including particle velocities, and parameters for the thermostat. Inside the pair loop,
the force on each particle is updated by the conservative, dissipative, and random pairwise force com-
ponents. The random force is divided by

√
∆t so that the velocity Verlet algorithm need not be altered

to implement Eq. 209.
The behavior of the DPD thermostat can be assessed in a similar fashion as was the Berendsen

thermostat above. Here I’ve run several MD simulations of the LJ fluid at a density of 0.84 with 512
particles for 10,000 steps, with various values of Γ and ∆t. Fig. 26 shows the temperature vs time for
these various runs. We see that increased friction leads to faster approach to the setpoint temperature,
and that temperature fluctuations seem to conform to canonical statistics pretty well.

Figure 26: Temperature vs time (output every time step) for eight DPD-thermostatted MD simulations of the LJ
fluid at density 0.84 with 512 particles. Γ indicates the friction; the setpoint temperature is 3.0, and all simulations
were initialized with velocities consistent with a temperature of 2.0. Upper plot shows ∆t of 0.001, lower 0.01.

81

6 ENSEMBLES

6.2.4 The Nosé-Hoover Chain
The final thermostat we consider is one based on the extended Lagrangian formalism, which leads

to a deterministic trajectory; i.e., there are no random forces or velocities to deal with. The most
common and so far most reliable thermostat of this kind is the Nosé-Hoover thermostat. This thermostat
can be implemented as a “single” or a “chain”; here, we consider a chain.

The basic idea of the Nosé-Hoover thermostat is to use a friction factor to control particle velocities.
This friction factor is actually the scaled velocity, vξ1 , of an additional and dimensionless degree of
freedom, ξ1. This degree of freedom has an associated “mass”, Q1, which effectively determines
the strength of the thermostat. The equations of motion obeyed by this additional degree of freedom
guarantee that the original degrees of freedom (rN , pN) sample a canonical ensemble. This degree of
freedom is the terminus of a chain of similar degrees of freedom, each with their own mass. The chain
has a total of M “links.” The overall set of equations of motion are:

ṙi =
ṗi
mi

(215)

ṗi = Fi −
pξ1
Q1

pi (216)

ξ̇k =
pξk
Qk

k = 1, . . . ,M (217)

˙pξ1 =

(∑
i

p2
i

mi
− LkBT

)
−
pξ,2
Q2

pξ1 (218)

˙pξk =

(
p2
ξk−1

Qk−1
− kBT

)
−
pξk+1

Qk+1
pξk (219)

˙pξk =

(
p2
ξM−1

QM−1
− kBT

)
(220)

The main advantage of the Nosé-Hoover chain thermostat is that the dynamics of all degrees of
freedom are deterministic and time-reversible. No random numbers are used. The code mdlj_nhc.c
implements an M = 2 Nosé-Hoover chain thermostat in an MD simulation of an Lennard-Jones fluid,
by implementing Algorithms 30, 31, and 32 from Frenkel & Smit. The relevant parameters are nhcT, the
setpoint temperature, and nhcQ, the two masses. Fig. 27 illustrates the use of the NHC thermostat on
an N=512, ρ = 0.84 LJ system.

6.3 Molecular Dynamics at Constant Pressure: The Berendsen Barostat
As with temperature control, there are different classes of pressure control for MD simulation. The

only one we consider here is the length-scaling technique of Berendsen. It should be noted that one
can also use the the extended Nosé-Hoover (extended Lagrangian) formalism of Martyna, which is
mentioned in F&S; in the interest of time, we will forego a discussion of this technique.

Here we consider implementation of the Berendsen barostat [9]. Recall that the working definition
of instantaneous pressure, P , is given by:

P = ρT + vir/V (221)

where vir is the virial:
vir =

1

3

∑
i>j

f (rij) · rij (222)

82

6 ENSEMBLES

Figure 27: Temperature vs time (output every 10 time steps) for four MD simulations of the LJ fluid at density
0.84 with 512 particles with initial velocities assigned to give an initial temperature of 2.0. A 2-mass Nosé-Hoover
chain with masses indicated in the legend is used to maintain the temperature at 2 until t = 2, at which time the
setpoint temperature is instantaneously raised to 3. The third number in the legend label is the product of the
number of particles and the relative fluctuation in instantaneous temperature measured for the second half of
each respective simulation, which in the canonical ensemble should be 2/3.

and V is the system volume. f (rij) is the force exerted on particle i by particle j.
Consider a cubic system, where V = L3. The Berendsen barostat uses a scale factor, µ, which is

a function of P , to scale lengths in the system:

ri → µri (223)

L → µL (224)

µ is given by

µ =

[
1− ∆t

τP
(P0 − P)

]1/3

(225)

Here, ∆t is the integrator time-step, τP is the “rise time” of the barostat, and P0 is the setpoint pressure.
Berendsen discusses the tensor-based analog for non-cubic systems [9].

The code mdlj_berp.c implements the Berendsen barostat. The relevant parameters are berP, the
setpoint pressure, and ber_tau, the rise time. Fig. 28 shows pressure vs time for four MD simulations
of 512 particles with a setpoint pressure of 2.

Length scaling at each time step using a global scale factor, while effective in this instance, can
be lead to violent oscillations of pressure in more ordered systems, and is therefore not recommended
for production MD runs. However, it is common to find length scaling barostats used in the literature
without reporting how effective they are, measured at least in terms of pressure and its fluctuations.
But they can be useful for pre-equilibrating samples at some P prior to beginning an NVE simulation
during which one hopes the instantaneous pressure fluctuates about the previous setpoint. It is easy
to implement both the Berendsen thermostat and barostat in the same simulation program, to allow
pre-equilibration at setpoint T and P .

83

6 ENSEMBLES

Figure 28: Pressure vs time (output every time step) for three Berendsend-barostatted MD simulations of the
LJ fluid at initial density 0.84 with 512 particles. The rise time τ is indicated for each system in the legend. The
setpoint pressure is 2.0, and all simulations were initialized with velocities consistent with a temperature of 2.0.

84

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

7 Long-Range Interactions: The Ewald Summation
So far, we have considered interparticle interactions that are short-ranged by construction. Because

the Lennard-Jones potential decays so strongly with distance (as r−6), it is acceptable to cut off this in-
teraction at moderate distances and, if desired, add a correction factor which is the result of integrating
the potential over a uniform particle density out to r = ∞. However, Coulomb interactions, common
in molecular simulation, decay relatively much more slowly (as r−1) and as a consequence, we cannot
compute a correction factor; the integral diverges. There are several ways to handle long-ranged in-
teractions, but the most popular is the Ewald summation [14], which we discuss here. This discussion
is drawn primarily from F&S chapter 12 [1], and the excellent paper by Markus Deserno and Christian
Holm [15, 16].

7.1 The Ewald Coulombic energy
First, assume we have a collection of charged particles in a cubic box with side length L, with

periodic boundary conditions. The collection is assumed neutral; there is an equal number of positive
and negative charges. The total Coulombic energy in this system is given by:

UCoul =
1

2

N∑
i=1

qiφ(ri) (226)

φ(ri) is the electrostatic potential at position ri:

φ (ri) =

N∑
j=1

′∑
n∈Z3

qj
|rij + nL|

(227)

n is a three dimensional integer vector. The prime on the first summation indicates that we do not admit
the term for which j = i if n = (0, 0, 0). That is, we allow each particle to interact with its periodic
images, but not with itself.

To evaluate U efficiently, we break it into two parts:
• A short-ranged potential treated with a simple cutoff;
• A long-ranged potential which is periodic and slowly varying, which can therefore be represented to

an acceptable level of accuracy by a finite Fourier series.
How can we do this? The idea of Ewald is to do two things: first, screen each point charge using a

diffuse cloud of opposite charge around each point charge, and then compensate for these screening
charges using a smoothly varying, periodic charge density. The screening charge is constructed to
make the electrostatic potential due to a charge at position rj decay rapidly to near zero at a prescribed
distance. These interactions are treated in real space. The compensating charge density, which is the
sum of all screening densities except with opposite charges, is treated using a Fourier series.

The standard choice for a screening potential is Gaussian:

ρs(r) = −qi(α/π)3/2e−αr
2

(228)

So for each charge, we add such a screening potential. Now, to evaluate UCoul, we have to evaluate
the potential of a charge density that compensates for the screening charge densities at each particle.
This is done in Fourier space.

The potential of a given charge distribution is given by Poisson’s equation:

−∇2φ(r) = 4πρ(r) (229)

85

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

Now, the compensating charge distribution, denoted ρ1, can be written:

ρ1(r) =

N∑
j=1

∑
n∈Z3

qj(α/π)3/2 exp [−α |r− (rj + nL)|] (230)

Notice that the sum over j includes the self-interaction when we include the potential due to this charge
density in the calcuation of the total Coulombic energy (i.e., we have omitted the prime on the outer
summation over particle indices).

Now, consider the Fourier transform of Poisson’s equation:

k2φ̃(k) = 4πρ̃(k) (231)

The Fourier transform of ρ1(r) is given by

ρ1(k) =

∫
V
dre−ik·rρ(r) (232)

=

N∑
j=1

qje
−ik·rje−k

2/4α (233)

(The math required to show this involves noting that the the Fourier transform of a Gaussian is another
Gaussian, and that the integral over all space of a normalized Gaussian is unity.) The k-vectors are
given by

k =
2π

L
l l ∈ Z3 (234)

We can use Eq. 229 to solve for φ̃(k):

φ̃(k) =
4π

k2

N∑
j=1

qje
−ik·rje−k

2/4α (235)

Note that this solution is not defined for k = 0. In fact, we have to assume that φ̃(0) = 0, which
is consistent with the notion that our system and all its periodic images is embedded in a medium of
infinite dielectric constant (a perfect conductor; the “tinfoil” boundary condition).

Fourier inverting φ̃(k) gives

φi(r) =
1

V

∑
k 6=0

φ̃(k)eik·r (236)

which, when we substitute for φ̃(k) from Eq. 235 yields

φi(r) =
∑
k 6=0

N∑
j=1

4πqj
V k2

eik·(r−rj)e−k
2/4α (237)

86

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

So, the total Coulombic energy due to the compensating charge distribution is

U1 =
1

2

∑
i

qiφ1(ri) (238)

=
1

2

∑
k 6=0

N∑
j=1

4πqiqj
V k2

eik·(r−rj)e−k
2/4α (239)

=
1

2V

∑
k 6=0

4π

k2
|ρ(k)|2 e−k2/4α (240)

where

ρ(k) =
N∑
i=1

qie
ik·r (241)

Notice that this does indeed include a spurious self-self interaction, because the point charge at
ri interacts with the compensating charge cloud also at ri. This self-interaction is the potential at the
center of a Gaussian charge distribution. First, we solve Poisson’s equation for the potential due to a
Gaussian charge distribution (details in F&S):

− 1

r

∂2rφGauss

∂r2
= 4πρGauss(r) (242)

yielding
φGauss(r) =

qi
r

erf(
√
ar) (243)

where erf is the error function:

erf(x) =
2√
π

∫ x

0
e−r

2
dr (244)

At r = 0, we have

φself = φGauss(0) = 2
(α
π

)1/2
qi (245)

So the total self-interaction energy becomes

Uself =
(α
π

)1/2
N∑
i=1

q2
i (246)

which must be subtracted from the total Coulombic energy.
Finally, the real-space contribution of the point charge at ri is the screened potential:

φshort(r) =
qi
r
− qi
r

erf
(√
ar
)
≡ qi

r
erfc

(√
αr
)

(247)

where erfc is the complementary error function. The total real-space Coulombic potential energy is
therefore

Ushort =
1

2

N∑
i 6=j

qiqj
rij

erfc
(√
αrij

)
(248)

87

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

Putting it all together:

UCoul =
1

2V

∑
k 6=0

4π

k2
|ρ(k)|2 e−k2/4α (249)

−
(α
π

)1/2
N∑
i=1

q2
i (250)

+
1

2

N∑
i 6=j

qiqj
rij

erfc
(√
αrij

)
(251)

where

ρ(k) =
N∑
i=1

qie
ik·r. (252)

Now, the arbitrariness left to us at this point is in a choice for the parameter α. Clearly, very small
alphas make the Gaussians tighter and therefore the compensating charge distribution less smoothly
varying. This means a Fourier series representation of U1 with a given number of terms is more
accurate for larger α. We’ll evaluate choice of α in Sec. 7.3.

7.2 Ewald Forces
Now, we can use Eq. 249 in a Monte Carlo simulation of a system of charges, provided that peri-

odic boundary conditions are used and the domain is cubic. (Extensions to non-cubic boxes and slab
geometries are discussed to a limited extent in F&S.) We can also use the Ewald technique to calculate
forces for use in molecular dynamics simulations.

The force on particle i due to the charges in the system is given by

Fi = − ∂

∂ri
UCoul (253)

For our purposes, the two contributions to Fi are due to the k-space energy and the short-ranged,
real-space energy:

Fi = F
(k)
i + F

(r)
i (254)

Notice that there is no change in Uself when ri changes, so no forces arise from Uself .
The k-space contribution is given by

F
(k)
i = qi

∑
j

qj
1

V

∑
k 6=0

4πk

k2
e−k

2/4α sin (k · rij) (255)

The real-space contribution is given by

F
(r)
i = qi

∑
j

qj

[
2

√
α

π
e−αr

2
ij +

1

rij
erfc(
√
αrij)

]
rij
r2
ij

(256)

7.3 Implementation and Evaluation
We will consider an Ewald implementation which is a modified version of the ewald code writ-

ten for Berend Smit’s Molecular Simulation course. (All of Prof. Smit’s codes are available in the
FrenkelSmitCodes directory of the instructional-codes respository.) This code simply computes

88

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

the Ewald energy for a cubic lattice, given an appropriate number of particles, and a value for
√
α (which

is called α in the code), and a value for kmax, the maximum integer index for enumerating k-vectors. 1

The units used in a system with electrostatics differ depending on community. So far, we have
assumed that the units of electrostatic potential are charge C , divided by length L , because we write
potential as φ = q/|r|, where q is measured in units of C and distance in units of L . Energy is
therefore written in units of C 2 over L , and force in units of C 2 over L 2. If we want the final energy
in more familiar units, we can choose C and L , and use the standard prefactor 1/4πε0 to convert from
“charge squared per length” to “energy”. For example, in SI units, ε0 = 8.85419 × 10−12 (C2/m)/J. In
this implementation, we use a length of L = 1 and C = 1 and measure energy such that 1/4πε0 = 1.

We will examine two configurations, both with N = 83 = 512 particles, with alternating + and -
charges. One configuration has the particle on a cubic lattice with lattice spacing r0 = 1, which is the
standard NaCl crystal structure. We will call this the “crystal” configuration. The other is like the crystal,
only each particle is displaced by a random amount from its Self Part lattice position with a maximum
displacement of 0.3. We will call this the “liquid” configuration. We compute the total electrostatic energy
via the Ewald sum technique for various values of 1/

√
α and maximum k-vector index. As we increase

the number of k-vectors taken in the sum, we would like to show that the total energy converges to a
certain value. We will measure this in terms of the Madelung constant, M :

UCoul = −Nq
2M

4πε0r0
(257)

Table 2 shows results of Ewald summation for the perfect lattice, and Table 3 shows resuts for the
“liquid”. We see several interesting things from these example calculations:

1. The self-energy is the dominant contributor from the long-range compensating charge smears.
2. The Fourier-space contribution is relatively small, and is much smaller for the perfect lattice than

for the liquid. This means the precision of the Fourier transform of the charge distribution (which
is larger for larger kmax is relatively unimportant to the calculation.

3. The overall Coulomb energy is insensitive to the real-space cutoff for the perfect lattice, while it
is weakly decreasing in magnitude (it is negative overall) for increasing real-space cutoff in the
liquid.

1One modification of this code is a necessary one: the implementation of the real-space energy was left as an exercise.
Other modifications made easily include embedding the main program inside a double loop over desired α and kmax values.

89

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

1/
√
α kmax Ushort U1 Uself UCoul M

1.00 4 -0.3106 1.0354×10−3 -0.5642 -0.8738 1.7476
1.00 8 -0.3106 1.0354×10−3 -0.5642 -0.8738 1.7476
1.00 16 -0.3106 1.0354×10−3 -0.5642 -0.8738 1.7476
1.50 4 -0.4958 1.1708×10−7 -0.3780 -0.8738 1.7476
1.50 8 -0.4958 1.1708×10−7 -0.3780 -0.8738 1.7476
1.50 16 -0.4958 1.1708×10−7 -0.3780 -0.8738 1.7476
2.00 4 -0.5917 2.3491×10−13 -0.2821 -0.8738 1.7476
2.00 8 -0.5917 2.3491×10−13 -0.2821 -0.8738 1.7476
2.00 16 -0.5917 2.3491×10−13 -0.2821 -0.8738 1.7476
2.50 4 -0.6481 1.3732×10−20 -0.2257 -0.8738 1.7476
2.50 8 -0.6481 1.3732×10−20 -0.2257 -0.8738 1.7476
2.50 16 -0.6481 1.3732×10−20 -0.2257 -0.8738 1.7476
3.00 4 -0.6876 5.1260×10−30 -0.1862 -0.8738 1.7476
3.00 8 -0.6876 5.1260×10−30 -0.1862 -0.8738 1.7476
3.00 16 -0.6876 5.1260×10−30 -0.1862 -0.8738 1.7476
3.50 4 -0.7102 1.2018×10−36 -0.1636 -0.8738 1.7476
3.50 8 -0.7102 1.2018×10−36 -0.1636 -0.8738 1.7476
3.50 16 -0.7102 1.2018×10−36 -0.1636 -0.8738 1.7476
4.00 4 -0.7328 2.5866×10−37 -0.1410 -0.8738 1.7476
4.00 8 -0.7328 2.5866×10−37 -0.1410 -0.8738 1.7476
4.00 16 -0.7328 2.5866×10−37 -0.1410 -0.8738 1.7476

Table 2: Using the Ewald summation to compute total Coulomb energy of an 8x8x8 “NaCl” lattice (using ewald.f
from FrenkelSmitCodes/Exercises). For various values of the real-space cutoff 1/

√
α and maximum number

of k-vectors kmax, the values of the real-space energy Ushort, the Fourier-space energy U1, and the self-energy
correction −Uself are shown, together with the Madelung constant M .

90

7 LONG-RANGE INTERACTIONS: THE EWALD SUMMATION

1/
√
α kmax Ushort U1 −Uself UCoul M

1.00 4 -0.3322 3.1339×10−2 -0.5642 -0.8650 1.7300
1.00 8 -0.3322 3.2193×10−2 -0.5642 -0.8642 1.7283
1.00 16 -0.3322 3.2193×10−2 -0.5642 -0.8642 1.7283
1.50 4 -0.4960 9.8621×10−3 -0.3780 -0.8642 1.7283
1.50 8 -0.4960 9.8652×10−3 -0.3780 -0.8642 1.7283
1.50 16 -0.4960 9.8652×10−3 -0.3780 -0.8642 1.7283
2.00 4 -0.5859 3.8735×10−3 -0.2821 -0.8642 1.7283
2.00 8 -0.5859 3.8735×10−3 -0.2821 -0.8642 1.7283
2.00 16 -0.5859 3.8735×10−3 -0.2821 -0.8642 1.7283
2.50 4 -0.6402 1.7194×10−3 -0.2257 -0.8642 1.7283
2.50 8 -0.6402 1.7194×10−3 -0.2257 -0.8642 1.7283
2.50 16 -0.6402 1.7194×10−3 -0.2257 -0.8642 1.7283
3.00 4 -0.6787 7.4067×10−4 -0.1862 -0.8641 1.7282
3.00 8 -0.6787 7.4067×10−4 -0.1862 -0.8641 1.7282
3.00 16 -0.6787 7.4067×10−4 -0.1862 -0.8641 1.7282
3.50 4 -0.7008 3.7594×10−4 -0.1636 -0.8640 1.7281
3.50 8 -0.7008 3.7594×10−4 -0.1636 -0.8640 1.7281
3.50 16 -0.7008 3.7594×10−4 -0.1636 -0.8640 1.7281
4.00 4 -0.7230 1.5044×10−4 -0.1410 -0.8639 1.7278
4.00 8 -0.7230 1.5044×10−4 -0.1410 -0.8639 1.7278
4.00 16 -0.7230 1.5044×10−4 -0.1410 -0.8639 1.7278

Table 3: Using the Ewald summation to compute total Coulomb energy of an 8x8x8 “NaCl” liquid (using ewald.f
from FrenkelSmitCodes/Exercises). For various values of the real-space cutoff 1/

√
α and maximum number

of k-vectors kmax, the values of the real-space energy Ushort, the Fourier-space energy U1, and the self-energy
correction −Uself are shown, together with the Madelung constant M .

91

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

8 All-atom Potential Energy Functions
The modeling of molecular structure and inter/intra-molecular interactions is the job of the potential

energy function U (rN). Modern potential energy functions are actively maintained and carefully cu-
rated and optimized by several devoted groups around the world, and for the most part they are made
freely available to the research community. In this section, we’ll consider a few of the more popular
potentials out there. There are many good reviews out there about all-atom potential energy functions;
most of what I present here is adapted from the recent review by Harrison et al. [17]

First, a note on terminology. A potential energy function, or just “potential”, is conceptually just a
function that can compute potential energy from all atomic positions. Pairwise Lennard-Jones is an
example we have used extensively already. When used specifically by MD simulations, potentials are
often referred to as “force-fields”, since it is really their gradients that are used in MD; potential energy
itself is more of a diagnostic in most standard MD simulations (though it is extremely important in some
advanced free-energy methods). Because of this, potentials that are used in MD simulations have to
be differentiable, for the most part. (There are a few MD methods that can use so-called “discontinuous
forces” but no large-scale MD codes can.)

Second, a note on physical reality vs what potentials actually model. Interactions among atoms are
quantum-mechanical in nature. Modeling them accurately involves in-depth quantum chemical calcula-
tions that can be very expensive. Potentials used in most molecular simulations are empirical functions
that generally only very roughly approximate true interatomic interactions. Nuclei are treated as point
masses and electrons aren’t treated at all. Because of this simplification, empirical potentials always
have parameters that must be tuned against more accurate quantum chemical calculations and exper-
imental observations. Parameter tuning in potentials leads to specialization that reflects where such
potentials are most in demand. This will become evident as we start discussing important examples.

8.1 Class-I Potentials
Class-I potentials break down interatomic interactions between bonded and non-bonded interac-

tions. Bonded interactions include bonds, valence angles, and both proper and improper dihedrals
(Fig. 29). Non-bonded interactions include electrostatic and Lennard-Jones interactions. Class-I po-
tentials apply for systems of fixed bonded topology; i.e., bonds between atoms are permanent, never
breaking or forming. A simulation using a Class-I potential is therefore unable to model “chemistry”.
Examples of Class-I potentials include CHARMM [18–20], AMBER [21], Gromos [22], OPLS [23, 24],
and TraPPE [25].

The general form of a Class-I potential is

U =
∑

bonds

Kb(l − l0)2 +
∑

angles

Kθ(θ − θ0)2 (258)

+
∑

dihedrals

Kφ,n [1 + cos(nφ− δn)] (259)

+
∑

impropers

Kφ(φ− φ0)2 (260)

+
∑
i<j

{
qiqj
rij

+ 4εij

[(
σ

rij

)12

−
(
σ

rij

)6
]}

(261)

The first four terms are the “bonded” potential. Each bond is treated like a harmonic spring, with
a specific spring constant 2Kb and equilibrium length l0. Similarly, every angle is also harmonic. Di-
hedrals (also called torsions) are periodic and therefore modeled with a trigonometric expansion; each

92

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

Figure 29: Schematic representation of (A) the i-j bond vector rij , (B) the j-i-k angle θjik, (C) the i-j-k-l
torsion φijkl around the j-k bond, and (D) the i-j-k-l improper φijkl, comprising bonds i-j, i-k, and i-l (solid),
with vectors rij , rjk, rkl (dashed) defining the dihedral angle. In (C), the angle φijkl is acute and positive by
IUPAC/IUB convention; if we sight down the j-k bond with j nearer to the eye, the i-j bond must rotate in a
clockwise direction by an angle less than π to eclipse the k-l bond.

dihedral may have a specific Kφ,n for one or more values of n. Finally, impropers (improper dihedrals)
refer to groupings of four atoms meant to be coplanar, such as three atoms bound to a nitrogen atom
in a trigonal-planar configuration.

Fig. 29 depicts representative bonded features with atoms labeled to permit presentation of formulas
for computing bond lengths, valence angles, dihedrals, and impropers. The measures are all defined
conventionally using vector arithmetic and the right-hand rule for vector cross-products. The bond
vector rij is defined

rij = ri − rj (262)

with magnitude

rij = |rij | = |ri − rj | (263)

=
[
(ri,x − rj,x)2 + (ri,y − rj,y)2 + (ri,z − rj,z)2

] 1
2 . (264)

For atoms j and k both bonded to i, the valence angle θjik is found via

cos θjik =
rij · rik
rijrjk

(265)

For atoms j and k bonded to each other, the dihedral angle defined by atom i bonded to j and atom
l bonded to k is found by computing the angle of intersection between the two planes defined by the
i-j/j-k bonds and the j-k/k-l bonds.

93

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

cosφijkl =
(rji × rkj) · (rkj × rlk)

|rji × rkj | |rkj × rlk|
(266)

Now, for improper dihedrals, this formula is usually sufficient because (a) φ0 is zero for coplanarity
and thus φ should be close to zero, and (b) arccos() always returns an angle on [0, π]. However, for
proper dihedrals (torsions), since these are fully periodic and not guaranteed to have symmetry of
reflection about 0 or π, we must define φ on [−π, π], and the arccos() is not enough. So, the convention
used to determine the sign of the torsion angle is to compute its sine:

sinφijkl =
[(rji × rkj) · (rkj × rlk)] · rkj
|rji × rkj | |rkj × rlk| rkj

(267)

The sign of φijkl is determined by its sine thusly:

φijkl =

{
− cos−1 cosφijkl, if sinijkl < 0

cos−1 cosφijkl, otherwise
(268)

Most Class-I potentials are based on the concept of context-specific “atom types”. For example, a
carbon atom in an aliphatic chain is of a different type than a carbon atom in an aromatic ring, even
though both are “carbon”. Then, bonds, angles, dihedrals, and impropers are classified by the types of
their member atoms. This results in huge databases of potential parameters and the necessity to fully
specify all bonded parameters for any system that is to be simulated. Luckily, most MD packages have
helper routines to do just that.

Determining these parameters for a given force field is context-specific and therefore a bit of an art.
Bonded potential parameters are mostly found by fitting the given analytical forms to series of single-
point energy calculations peformed using high-level quantum-mechanical simulations. For example,
parameters for the C1-C2-C3-C4 torsion in olefins was parameterized by sweeping the torsion angle
of a quantum mechanical model of butane. Because most molecules involve a superpositition of such
bonded potentials, their use confers a vibrational mode spectrum to molecules that can also be matched
with experimental spectra for parameter adjustment.

Non-bonded parameters like charges and LJ parameters are adjusted so that errors in thermody-
namics property calculations are minimized. This includes things like vacancy energies in solids, heats
of vaporization in liquids, and volumetric equations of state. Most force-field developers strive to make
their parameters sets as transferrable as possible, but one must always be aware of the context a force-
field is most appropriate for. CHARMM and AMBER are used mainly to model biological molecules,
while TRAPPE is pretty much strictly used for fluids. OPLS and GROMOS are used in a variety of
settings.

It is important to note that all potentials considered so far assume each atom has a fixed partial
charge (which may be zero). In fact, for class-I potentials, “charge” is an atom attribute wholly separate
from its type, and they are usually derived from QM calculations on small fragments. Potentials for
which the charge on each atom is a degree of freedom rather than a fixed quantity are described
as “polarizable”. Polarizable potentials are not widely used, but there are good arguments for their
requirement in situations where atoms with high polarizabilities might lead to local dipole moments that
influence interatomic interactions.

One important polarizable model is the classical Drude oscillator, in which each atom is assigned a
“ghost” particle tethered to its center that carries some of the charge. This allows each atom to behave
like a literal “fluctuating dipole”, but it requires an extended Hamiltonian approach where the Drude
particles’ equations of motion are solved along with those of the atom nuclei, making Drude-enabled

94

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

simulations substantially more expensive than fixed-charge simulations. For example, the polarizable
version of CHARMM is called CHARMM-Drude [26, 27].

8.2 Reactive Potentials
There are of course whole classes of problems for which the lack of ability to model bond breaking

and forming is a show-stopper. Though in principle quantum calcuations could be done in these cases,
the number of atoms typically included in a system usually precludes this. Instead, a lot of work has
gone into developing reactive potentials. The three main classes we consider here are the embedded-
atom method, bond-order potentials and ReaxFF.

8.2.1 Embedded Atom Method (EAM)
The embedded-atom method (EAM) was originally developed to model metals. [28] The basic idea

of EAM is that atoms interact in a pairwise manner with the nearest neighbors but they also interact
with a global field of electron density that is explicitly many-body in nature. For a system of N atoms,
the EAM potential is

U (rN) =
N∑
i=1

Fi(ρh,i) +
1

2

∑
j 6=i

φij(rij)

 (269)

where

F (ρ) = −√ρ, (270)

ρi =
∑
j 6=i

g (rij) , (271)

g (r) = exp (−βr), (272)

φ (r) = V2 (r)− 2F [g (r)] , (273)

V2 (r) =

VZBL (r) , r < r1,
α0 + α1r + α2r

2 + α3r
3, r1 ≤ r < r2,

−2c exp
(
−β

2 r
)

+ Φ0 exp (−αr), r ≥ r2,
(274)

VZBL (r) =
Z1Z2e

2

4πε0r

4∑
i=1

ci exp
(
−di

r

a

)
(275)

The second term in Eq. 273 accounts for the fact that the electron density into which an atom is
embedded does not include electrons from that atom itself. Eq. 275 is the Ziegler-Biersack-Littmark
(ZBL) screened nuclear repulsion potential used for modeling high-energy collisions between atoms.
The three branches that make up V2 produce a spline-connection between the ZBL and a Morse-like
attractive tail.

Among the many systems simulated using EAM is the sputtering of copper. [29]

8.2.2 Bond-Order Potentials
Bond-order potentials aim to capture the effect of the nearest-neighbor environment on the behavior

of any bond. Such potentials began with the work of Abell [30]. Here I only very lightly gloss over this
very deep field of research. In the bond-order formalism, the total potential energy due to covalent
bonds is:

U =
∑
i

∑
j>i

φij , (276)

95

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

where the bond energy φij between atoms i and j has repulsive and attractive components:

φij = VR(rij)− bijVA(rij), (277)

where VR and VA are Morse-type pair potentials:

VR(rij) = fij(rij)Aij exp(−λijrij) and (278)

VA(rij) = fij(rij)Bij exp(−µijrij) (279)

Here, rij is the scalar separation between atoms i and j. Aij , Bij , λij , and µij are all parameters
specific to the two elements participating in the bond. (I use the following ij-subscript convention:
when ij appears on a variable, i and j refer to the individual atom indices; when ij appears on a
parameter or function, i and j are specific only to the elements of atoms i and j.) The cutoff function
fij decays smoothly from 1 at some “inner” radius to 0 at some “outer” radius.

The bond order bij models all of the many-body chemistry:

bij =
1

2
[bij + bji + corrections] , (280)

where bij is the contribution of atoms that neighbor atom i to the bond order of the ij bond. These
involve complicated 3- and 4-body interactions. The corrections arise from the need to expand set of
thermochemical data which the potentials are fit against.

Bond-order potentials first applied to metals, but expanded into silicon and hydrocarbons with the
work of and Tersoff [31]and Brenner [32], respectively, producing what is called the “reactive empirical
bond order potential (REBO). The more recent adaptive intermolecular reactive empirical bond-order
(AIREBO) potential combines REBO with Lennard-Jones interactions and specific torsional potentials
for better modeling of hydrocarbon chains. [33]

Polarizable versions of reactive potentials have also been developed. The charge-optimized many-
body (COMB) potential is an extension of REBO in which the charge on each atom is allowed to change
according to energies dictated by input parameters such as atom electronegativity. [34] Adding oxygen
to the AIREBO hydrocarbon potential also necessitated including polarizability, leading to the qAIREBO
potential. [35]

8.2.3 ReaxFF
ReaxFF was introduced in 2001 as a new type of reactive force field for hydrocarbons, and its

formalism has now greatly expanded to describe reactive interatomic chemistries for a wide swath of
the periodic table [36, 37]. ReaxFF adopts the co-called “central-force” formalism wherein all pairs of
atoms interact and there are no switching functions. ReaxFF breaks down the potential into seven
distinct additive contributions:

UReaxFF = Ubond + Uover + Uangle + Utorsion + UVdW + UCoulomb + Uspecific (281)

The role of the “overcoordiation penalty” Uover is to monitor atom valencies and penalize deviations
from an ideal. This keeps hydrogens from binding to more than one partner, and carbons more the
four. The bond, angle, and torsion terms mimic those of class-I potentials but essentially determine
parameters on the fly based on geometries. The Coulomb and VdW terms represent electrostatics
and dispersion/excluded-volume interactions, while atom charges are forced to equilibrate given atom
electronegativities. The “specific” term is the “secret sauce” where a lot of things are put to specialize
ReaxFF for a particular system.

96

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

ReaxFF has been used for a large variety of reactive systems to date. It is fairly expensive to run
and requires a lot of tuning when applying it to systems it has never been applied to before.

8.3 Case Study: Stillinger-Weber Silicon
As a precursor to the Tersoff formalism, perhaps the earliest attempt to use molecular simulation

with a reactive potential to study a realistic atomic-scale model of silicon was due to Stillinger and
Weber [38]. The C-code that implements the Stillinger-Weber (SW) potential for silicon is mdswsi.c.
This code computes in reduced units as well; σ = 0.20951 nm, ε = 2.1678 eV, and m = 28.085 amu,
which are appropriate for a system of pure silicon. One reduced unit of temperature, ε/kB , corresponds
to 25156.74 K.

The main reason to introduce Stillinger-Weber silicon here is to give you a historical example of
an implementation of a simple reactive force-field. Silicon forms 4-coordinated tetrahedral bonded
structures. The SW potential includes three-body interactions that enforce this symmetry as well as
permit breaking and reforming of bonds to produce defects, for example.

The total potential is expressed as two sums, one for unique pair interactions, and another for unique
triplet interactions:

U =
∑
i<j

v2(rij) +
∑
i<j<k

v3(ri, rj , rk) (282)

The two-body term models the bonds:

v2 (r) =

{
εA (Br−p − r−q) exp

[
(r − a)−1

]
, r < a

0 r ≥ a
(283)

It is very much like a Lennard-Jones potential, only with different exponents and a “smooth cutoff” as
the interatom separation distance, r, approaches some cutoff, a, given by the factor exp

[
(r − a)−1

]
.

The three body models the angles, and is the sum of functions of each of the three angles of a
triplet, ijk:

v3 (ri, rj , rk) = hjik + hijk + hikj (284)

Here I have employed the shorthand notation hjik ≡ h (rij , rik, θjik). Note that, in the notation of
this potential, θjik is subtended at ri, and cos θcjik = −1

3 :

h (rij , rik, θjik) ≡

ελ exp
[

γ
rij−a + γ

rik−a

] (
cos θjik − cos θcjik

)2
if rij < a, and

0 otherwise
(285)

One computes the angle-j term, hijk, and the angle-k term, hikj , by permuting the indices appro-
priately.

97

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

The parameters used in the original study by Stillinger and Weber are:

A = 7.049556277 (286)

B = 0.6022245584 (287)

p = 4 (288)

q = 0 (289)

a = 1.80 (290)

λ = 21.0 (291)

γ = 1.20 (292)

As in any MD simulation, one computes the force on any particle i from the negative gradient of the
total potential:

fi = −∇riU (293)

= −
∑
j 6=i
∇riv2 (rij)−

∑
j 6=i

∑
k 6=i,j

∇riv3 (ri, rj , rk) (294)

The two-body term for the i-j interaction is only slightly more complicated than Lennard-Jones, due
to the smooth cutoff. Here, assuming i and j are within interaction range (rij < a), we have for the
force on i due to j:

−∇riv2 (rij) = − ∂

∂ri

{
εA
(
Br−pij − r

−q
ij

)
exp

[
(rij − a)−1

]}
(295)

= −εArij
rij

([
∂

∂r

(
Br−p − r−q

)]∣∣∣∣
rij

exp
[
(rij − a)−1

]
(296)

+
(
Br−pij − r

−q
ij

) { ∂

∂r
exp

[
(r − a)−1

]}∣∣∣∣
rij

)
(297)

= −εArij
rij

{(
−pBr−p−1

ij + qr−q−1
ij

)
exp

[
(rij − a)−1

]
(298)

−
(
Br−pij − r

−q
ij

)
exp

[
(rij − a)−1

]
(rij − a)−2

}
(299)

= v2
rij
rij

[
pBr−p−1

ij − qr−q−1
ij

Br−pij − r
−q
ij

+ (rij − a)−2

]
(300)

≡ fij (301)

Note that it is still true that fij = −fji. As an exercise, you should be able to show that the right-hand-
side of Eq. 300 is well-behaved (that is, it does not diverge, and in fact vanishes) as rij → a−.

It is comparatively much more tedious to evaluate the three-body gradients:

−∇riv3 (ri, rj , rk) = −∇ri (hjik + hijk + hikj) (302)

= −
(
∂hjik
∂ri

+
∂hijk
∂ri

+
∂hikj
∂ri

)
(303)

≡ fi←jk (304)

The triplet forces on the other members of the triplet, fj←ik and fk←ij , are defined analogously.

98

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

Each of the partials in Eq. 303 is unique:

θ

i

j
k

��
��
��
��

�
�
�

�
�
�

�
�
�
�

∂hjik
∂ri

= −γhjik

[
rij
rij

1

(rij − a)2 +
rik
rik

1

(rik − a)2

]
+ 2λ exp

(
γ

rij − a
+

γ

rik − a

)(
cos θjik − cos θcjik

)
×

[
rij
rij

1

rik
+

rik
rik

1

rij
−
(
rij
rij

1

rik
+

rik
rik

1

rij

)
cos θjik

] (305)

θ

k

i

j
�
�
�
�

��
��
��
��

�
�
�

�
�
�

∂hijk
∂ri

= −γjhijk

[
rij
rij

1

(rij − a)2

]
+ 2λj exp

(
γj

rij − a
+

γj
rjk − a

)(
cos θijk − cos θcijk

)
×

[
rjk
rjk

1

rij
+

rij
rij

1

rij
cos θijk

] (306)

θ

i

k

j

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

∂hikj
∂ri

= −γkhikj
[
rik
rik

1

(rik − a)2

]
+ 2λk exp

(
γk

rik − a
+

γk
rjk − a

)(
cos θikj − cos θcikj

)
×

[
−
rjk
rjk

1

rik
+

rik
rik

1

rik
cos θikj

] (307)

Note that the right hand sides of each of Eqns. 305, 306, and 307 vanish when the appropriate r’s are
greater than a’s, as in Eq. 212. As an exercise, it is easy to show that fi←jk + fj←ik + fk←ij = 0.

Let us now run two MD simulations for 10,000 time steps; one with and and the other without three
body forces, at reduced initial temperature T = 0.12 and reduced density ρ = 0.46 for a small system of
216 atoms. The code mdswsi.c can initialize atoms on a diamond-cubic lattice; the DC unit cell has 8
atoms, so the number of atoms one should specify for a perfect crystal is 8 times any product of three
integers. Using the -nc #,#,# switch we indicate how may DC unit cells we want in the x, y, and z,
directions, respectively. The code also has a switch -do-three-body which is by default on, but can
be turned off by passing a zero. Running this twice generates two logs and two trajectories:

$./ mdswsi -nc 3,3,3 -ns 10000 -fs 10 -prog 10 \
-do-three -body 1 -traj yes3.xyz > yes3.log

$./ mdswsi -nc 3,3,3 -ns 10000 -fs 10 -prog 10 \
-do-three -body 0 -traj no3.xyz > no3.log

Fig. 30 shows two 3-D system representations. The first is a perfect DC lattice with 216 atoms,
where a dot is drawn every 10 time steps for each atom, and each atom is colored uniquely. The
second shows the same view of a system for which the three-body forces are turned off; notice that it
appears liquid-like. Three-body forces are required to stabilize the DC lattice since each atom only has
four nearest neighbors.

Fig. 31 shows a plot of two-body and three-body potential energy vs. time from the first simulation,
and a plot of instantaneous temperature vs. time from both simulations on the right. Notice that the
three-body forces act to keep the system oscillating in its crystalline state, and the lack of three-body
forces results in system melting. This latter occurrence is because the DC lattice is a fairly unfavorable
configuration for a system with only two-body forces active.

The code mdswsi.c is very slow when three-body forces are turned on because it uses a brute-

99

8 ALL-ATOM POTENTIAL ENERGY FUNCTIONS

Figure 30: Two views of a 10,000-time-step NVE MD simulation of a system of 216 silicon atoms initialized on
a diamond-cubic lattice; (left) with three-body force and (right) without three-body forces. Each point is an atom
position, and atom positions are rendered every 10 time-steps, and each atom is colored uniquely.

Figure 31: Results of a 216-atom NVE MD simulation of SW silicon initialized on a DC lattice. (Left) Two-body
and three-body contributions to the potential energy vs time. (Right) Temperature vs. time for systems with and
without three-body forces active.

force N3 loop. In practice, any code that implements two- and three-body potentials with short-range
cutoffs will use data structures like the neighbor list and the link-cell algorithm to make the pair and
triplet loops more efficient. And although SW silicon is historically important, there are much better
(and more complicated) potentials out there for silicon-based systems, such as COMB [34].

100

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

9 Open-source Production MD: Gromacs and NAMD
In this section, I’ll illustrate a few examples for using two of the most popular MD packages for

academic research: Gromacs [39] and NAMD [40]. There are many other packages in use, and I in no
way mean to say these are any better or worse, just that they are popular.

9.1 Gromacs
The Gromacs source code is available officially from www.gromacs.org, though some Linux distribu-

tions offer pre-compiled versions. In most high-performance computing settings, Gromacs is compiled
from source code in order to link in hardware-specific libraries for things like internode communication
and compiler-specific math libraries. For this introductory survey though, we can just run the precom-
piled version on a laptop. (If you have macOS, you might have to compile Gromacs from source.) In
Ubuntu under WSL:

$ sudo apt install gromacs

Gromacs is a suite of tools that include an MD engine along with tools for system preparation and
simulation analysis. All tools are invoked using the pre-command ‘gmx‘. ‘gmx -help‘ will give a lot of
information.

Before proceeding with a couple of practical examples, I must convey the importance of reading the
documentation if you want to use Gromacs in your own research. The official Gromacs documentation
is extensive, but accessible to beginners. The official tutorials by Justin Lemkul are also a must if you
want to learn how to use Gromacs.

Like any MD simulation, using Gromacs breaks down into three main steps:
1. Prepare system.

(a) Get relevant atomic coordinates;
(b) Decide on a force-field and set the topology;
(c) Add solvent, ions, other atoms as necessary;
(d) Minimize the potential energy.

2. Run MD.
3. Analyze results.
As may be inferred, the first step is often the most difficult. It usually requires a lot of care and

thought to generate an initial condition for MD. Here we’ll consider just two test cases for which this is
not so difficult, but which illustrate the workflow.

9.1.1 A Box of Water
Here I illustrate a workflow for generating and simulating a small box of water molecules.
First, we can use ‘gmx insert-molecules‘ to generate a system with waters randomly positioned

inside a box:

$ gmx insert -molecules -ci /usr/share/gromacs/top/spc216.gro \
-nmol 100 -box 3 3 3 -o water_box.gro

The -box switch allows us to specify a box that is 3x3x3 nm3, and -ci refers to a special file
containing template atomic coordinates for a single water molecule. The -nmol switch asks Gromacs
to try to insert more molecules than a simple volume/density calculation would suggest (not many more
can be put in). This creates the file water_box.gro, which for me contains 432 water molecules, as
depicted using VMD in Fig. 32.

Next, we need to use pdb2gmx to generate the Gromacs topology file.

$ gmx pdb2gmx -f water_box.gro -o new_water_box.gro -p topol.top

101

www.gromacs.org
manual.gromacs.org
mdtutorials.com

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

Figure 32: A cubic box containing 432 water molecules created using gmx insert-molecules.

In running this command, I selected the CHARMM27 force field (which won’t matter since we have
nothing but water here) and the TIP3P water model. We now have the topology file and a new gro-
macs coordinate file (which just renames the water molecules to HOH to conform to the TIP3P naming
scheme).

Now, using the minim.mdp parameter file given, we can build and run the energy minimization:

$ gmx grompp -f minim.mdp -c new_water_box.gro -p topol.top -o min.tpr
$ gmx mdrun -v -deffnm min

This will create a lot of output files that all begin with min. One of them contains all the energy-like
data: min.edr. This file is binary, so the tool gmx energy is used to extract data from it:

$ gmx energy -f min.edr

This will create energy.xvg with column-oriented time-series of whatever data is selected interac-
tively. Fig. 33 shows what the potential energy looks like for this minimization.

(This is a very, very minimized system; the initial water box had no overlaps really at all.) Now we
can run the NVT simulation using the nvt.mdp parameter file:

$ gmx grompp -f nvt.mdp -c min.gro -p topol.top -o nvt.tpr
$ gmx mdrun -v -deffnm nvt

Fig. 34 shows a plot of the energies vs time for this short, short simulation.
Now let’s try using the output configuration from this NVT simulation as an input for an NPT simula-

tion.

$ gmx grompp -f npt.mdp -c nvt.gro -t nvt.cpt -p topol.top -o npt.tpr
$ gmx mdrun -v -deffnm npt

Fig. 35 shows a plot of the density vs time for this short, short simulation.

9.1.2 The SARS-CoV-2 spike protein receptor binding domain (RBD)
As a quick example of how to build a protein simulation system, we can consider a very recent

example from the Protein Data Bank. The SARS-CoV-2 spike glycoprotein complex is an enormous
protein, but a really important part of it are the domains that bind to the ACE2 receptors on the surfaces
of epithelial cells. These are called Receptor Binding Domains (RBDs). A lot of recent structural biology
has gone into understanding the details of the RBD-ACE2 interface. As an example, take a look at the
PDB entry 7c8j, which is the X-ray crystallographic structure of a recombinant construct of the SARS-
CoV-2 RBD and the ACE2 ectodomain of the bat [41]. We can use simulations to answer a lot of
interesting questions about this structure, but let’s just use it now as a source of coordinates to run a
simulation of just the RBD alone.

102

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

0 20 40 60 80
Time (ps)

18000

17000

16000

15000

14000

(k
J/m

ol
)

GROMACS Energies
Potential

Figure 33: Potential energy vs cycle in a Gromacs minimization of a box of 432 waters.

The first thing to do is to download the PDB file for this entry; there are several ways to do this, but
I like to use an interactive VMD session and just put 7c8j in the new molecule file browser. Once VMD
has it loaded, the following TcL command in the terminal will create the stripped-down PDB file for just
the RBD:

[atomselect top "chain B"] writepdb my_7c8j.pdb

Now we can pretty much follow Justin Lemkul’s lysozyme tutorial here:

generate the topology; use OPLS -AA force field (sel. 15)
$ gmx pdb2gmx -f my_7c8j.pdb -o my_7c8j_processed.pdb -water spce
enlarge box
$ gmx editconf -f my_7c8j_processed.pdb -o my_7c8j_newbox.gro \

-c -d 1.0 -bt cubic
solvate
$ gmx solvate -cp my_7c8j_newbox.gro
copy JK’s ions.mdp; add ions (replace group 13)
$ gmx grompp -f ions.mdp -c my_7c8j_solv.gro -p topol.top \

-o ions.tpr
$ gmx genion -s ions.tpr -o my_7c8j_solv.gro -p topol.top \

-pname NA -nname CL -neutral

103

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

0 20 40 60 80 100
Time (ps)

17500

15000

12500

10000

7500

5000

2500

0

2500

(k
J/m

ol
)

GROMACS Energies

Potential
Kinetic En.
Total Energy

Figure 34: Energies vs time in an NVT MD simulation (300 K) of a box of 432 water molecules.

minimize potential energy using JK’s minim.mdp
$ gmx grompp -f minim.mdp -c my_7c8j_solv.gro -p topol.top -o em.tpr
$ gmx mdrun -v -deffnm em
have a look at the potential energy
$ gmx energy -f em.edr -o potential.xvg
copy JK’s nvt.mdp; run NVT MD for 50,000 steps -- this will take a few hours ...
$ gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr
$ gmx mdrun -v -deffnm nvt

This system has about 60,000 atoms. I show a couple of views from VMD in Fig. 36. For such a
large system, we won’t be able to run very long on a laptop; 100 ps takes about 3 hours on mine. Note
that we’d typically want to simulate for hundreds of nanoseconds, which would be several thousand
hours on my laptop, or a a day or so on a supercomputer. After about 30 ps (an hour), I went ahead
and made a plot of the energies (Fig. 37).

9.2 NAMD
The NAMD source code and many precompiled binaries are available from the official download

site at the University of Illinois. Like Gromacs, NAMD is also available in many supercomputing centers.
Compiling NAMD from source is not for the faint-hearted, so I won’t cover that here; fortunately for us,
the standard ‘Linux-multicore‘ executable will work just fine in Ubuntu on WSL. (If you have a mac, you’ll

104

https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD
https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

0 20 40 60 80 100
Time (ps)

500

600

700

800

900

1000

(k
g/

m
^3

)

GROMACS Energies

Density

Figure 35: Density vs. time in an NPT MD simulation (1 bar, 300 K) of a box of 432 water molecules.

Figure 36: (Left) Simulation box for the SARS-CoV-2 RBD simulation showing all waters. (Right) Just the protein.

have to download a mac-specific executable.) For now, just download the tarball, extract it, and copy
the namd2 executable to /usr/local/bin/:

$ tar zxf NAMD_2 .14 _Linux -x86_64 -multicore.tar.gz
$ cd NAMD_2 .14_Linux -x86_64 -multicore/

105

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

0 5 10 15 20 25 30
Time (ps)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

(k
J/m

ol
)

1e6 GROMACS Energies

Potential
Kinetic En.
Total Energy

Figure 37: Energies vs. time for a simulation of the SARS-CoV-2 S RBD in explicit water using Gromacs on a
dinky little Dell laptop.

$ sudo cp namd2 /usr/local/bin/

If you have not done so already, download the Linux version of VMD and install it inside WSL as
well – we need to use that rather than the native Windows version here.

To build a system to simulation with NAMD with the CHARMM force field, one must use the psfgen
utility of VMD. This will generate an input PDB file along with a PSF file that contains all the topological
information. I cannot stress enough how important it is to use the psfgen manual; I’m only showing a
little bit of here.

Let’s revisit the SARS-CoV-2 S RBD for this example. Starting with the same coordinates extracted
from the PDB entry and put into my_7c8j.pdb, we use a series of VMD scripts to build a solvated
system.

First is mkpsf.tcl (it’s name is not important; what’s important is what is inside it). This script
contains TcL commands that implement PSF generation using VMD as an interpreter. To run it:

$ vmd -dispdev text -e mkpsf.tcl

This generates my_7c8j.psf which is an X-PLOR Protein Sturcture Format (PSF) file, along with
the PDB file my_78cj_processed.pdb, which contains all the missing H’s. It is customary to run a
short energy minimization in vacuum just in case some of those H’s are a little too close to each other
by accident. As with Gromacs, this is done by invoking the main MD program with an input configuration

106

https://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

file requesting a minimization. Here, this is vac.namd. This can be run:

$ namd2 vac.namd >& vac.log &
$ tail -f vac.log

The tail command allows you to watch the simulation write to vac.log as it runs. Once this
finishes, the next step is to solvate and neutralize. This is accomplished with another script, solv.tcl,
which uses both the solvate and autoionize VMD packages:

$ vmd -dispdev text -e solv.tcl

Similar to the editconf in Gromacs, solv.tcl computes and saves the resulting box dimensions,
here in a file called cell.inp. Once this is done, we see the new PSF/PDB pair my_7c8j_i.psf and
my_7c8j_i.pdb that contain the protein and all the solvent. These files, along with cell.inp and the
CHARMM parameter files are now inputs for a 100-ps NPT MD simulation described by prod.namd.

$ namd2 +p8 prod.namd >& prod.log &
$ tail -f prod.log

This takes about 1.5 h on my Dell Latitude 7400 2-in-1 Intel Core-I7 laptop on WSL2 running Ubuntu.
I ran this in a directory called instructional-codes/my_work/namd, so the directory originals is two
up from the run directory. Fig. 38 shows plots of energies, temperature, and pressure, vs time-step from
this MD simulation, generated by the following four python commands:

$ python3 ../../ originals/plot_mdlj_log.py -fmt NAMD \
-logs prod.log -d 11 14 -ylabel "Temperature (K)" -o temp.png

$ python3 ../../ originals/plot_mdlj_log.py -fmt NAMD \
-logs prod.log -d 18 -ylabel "Pressure (bar)" -o pres.png \
-ylim -500 500 -every 100

$ python3 ../../ originals/plot_mdlj_log.py -fmt NAMD \
-logs prod.log -d 9 10 12 -ylabel "Energy (kcal/mol)" \
-ylim -150000 100000 -o kin -pot -tot.png

$ python3 ../../ originals/plot_mdlj_log.py -fmt NAMD \
-logs prod.log -d 1 2 3 4 -ylabel "Potential energy (kcal/mol)" \
-o bonded.png

It should be stressed that system generation in both Gromacs and NAMD requires surmounting
a significant learning curve if one wants to venture from only the simplest systems shown here. The
Gromacs workflow is (to me) a bit more uniform than NAMD, which requires essentially a bunch of
script-writing. (VMD offers an automated PSF builder that also works for simple systems.)

107

9 OPEN-SOURCE PRODUCTION MD: GROMACS AND NAMD

Figure 38: (Clockwise from top-left) Temperature; pressure; bonded potential energies; kinetic, potential and
total energies, vs time-step from a NAMD simulation of solvated SARS-CoV-2 S RBD.

108

10 FREE ENERGY METHODS

10 Free Energy Methods
In this lecture, we will consider aspects of computing free energy differences from molecular sim-

ulations. The umbrella terms “free-energy methods” or “free-energy calculations” cover a wide and
growing array of methods for computing free energies [42]. Some, like the Widom test-particle insertion
method and metadynamics, can be computed using a single simulation, while others require a series of
simulations that carefully span the space between metastable states. In some cases, that space is an
artificial mixture of two Hamiltonians, as in classical thermodynamics integration (TI), or it is a region of
“feature space” for a single Hamiltonian that separates two actual metastable states, as in potential of
mean force (PMF) calculations. In these remaining sections, we will touch on a few of these methods.

10.1 Excess Chemical Potential via the Widom Method
We recall that the free energy of the canonical ensemble, termed the Helmholtz free energy and

denoted F , is defined by

F = −kBT lnQ (N,V, T) (308)

= −kBT ln

({
V N

Λ3NN !

}{
V −N

∫
drN exp

[
−βU

(
rN
)]})

(309)

= −kBT ln

(
V N

Λ3NN !

)
− kBT ln

(∫
dsN exp

[
−βU

(
sN ;L

)])
(310)

≡ Fid (N,V, T) + Fex (N,V, T) (311)

Here, Fid is the “ideal gas” free energy, and Fex is the “excess” free energy. The chemical potential
is defined as the change in free energy upon addition of a particle:

µ =

(
∂F

∂N

)
V T

(312)

For large N ,

µ = −kBT ln (QN+1/QN) (313)

= −kBT ln

(
V/Λd

N + 1

)
− kBT ln

∫
dsN+1 exp

[
−βU

(
sN+1;L

)]
∫
dsN exp

[
−βU

(
sN ;L

)]

= µid (ρ) + µex (314)

which defines the excess chemical potential, µex. We see that we can express the quotient of configu-
rational integrals in µex as an integration of the ensemble average of ∆U ≡ U

(
sN+1

)
−U

(
sN
)

over
sN+1, the scaled coordinates of the (N + 1)’th particle, or “test” particle:

µex = −kBT ln

∫
dsN+1 〈exp (−β∆U)〉N (315)

This equation implies that we can measure µex by performing a brute force sampling of exp (−β∆U) in
an otherwise normal NVT MC simulation. That is, we can at frequent intervals in a normal MC program
“create” a test particle with a position sampled uniformly in the box, compute U

(
sN+1

)
−U

(
sN
)
, and

accumulate exp (−β∆U). This is the Widom method.

109

10 FREE ENERGY METHODS

The code mclj_widom.c implements the Widom method for the Lennard-Jones fluid in an NVT
simulation. Below is a code fragment for sampling ∆U using the Lennard-Jones pair potential 89:

rx[N]=(gsl_rng_uniform(r) -0.5)*L;
ry[N]=(gsl_rng_uniform(r) -0.5)*L;
rz[N]=(gsl_rng_uniform(r) -0.5)*L;

for (j=0;j<N;j++) {
dx = rx[N]-rx[j];
dy = ry[N]-ry[j];
dz = rz[N]-rz[j];
r2 = dx*dx + dy*dy + dz*dz;
r6i = 1.0/(r2*r2*r2);
du += 4*(r6i*r6i - r6i);

}

The particle with index N is assumed to be the “test particle”; the other particles are indexed 0 to
N − 1. In the first bit, the position of the test particle is generated as a uniformly random location inside
a cubic box of side length L. Then we loop over the particles 0 to N − 1 and accumulate ∆U .

Using the code mclj_widom.c, we can measure µex (ρ, T) in NVT MC simulations. This represents
an alternate way of computing µex to that of µV T MC, in which ρ is an observable. In Fig. 39, I show
µex vs. ρ at T = 3.0 computed using both µV T MC and the NVT Widom method. The µV T simulations
were initialized with 512 particles initially, while the Widom simulations were run with N = 216 particles.
Each point is an average of three indenpemdent calculations.

Figure 39: µex vs. ρ for the Lennard-Jones fluid at T = 3.0 computed using a grand canonical µVT Monte Carlo
simulation and an NVT simulation with the Widom sampling method.

It would be useful to know how to determine which of these apparently competing methods is best
for computing µex. They are both similar in computational requirements (this is not further qualified here;
if someone wants to make this comparison, he or she is welcome to do this as a project). On the one
hand, we have an inherent limitation of the grand canonical simulation: one cannot specify the system

110

10 FREE ENERGY METHODS

density exactly; rather it is an observable with some mean and fluctuations. The Widom method does
allow one to specify the density precisely, and in this regard, it is probably more trustworthy in computing
µex. On the other hand, the Widom method suffers the limitation that it is not generally applicable to
systems with any potential energy function. For example, for hard-sphere systems, the Widom method
would always predict that µex is 0, a clearly nonsensical answer. The “overlapping distribution method”
of Bennett, discussed in Section 7.2.3 of F&S, offers a means to overcome this particular limitation.
We do not cover this method in lecture, but you are encouraged to explore the overlapping distribution
method on your own (maybe as a project).

10.2 Thermodynamic Integration
Thermodynamic integration is a conceptually simple, albeit expensive, way to calculate free energy

differences from MC or MD simulations. In this example, we will consider the calculation (again) of
chemical potential in a Lennard-Jones fluid at a given temperature and density, a task performed very
well already by the Widom method (so long as the densities are not too high.) More details of the
method can be found in the work of Tironi and van Gunsteren [43].

We begin with the relation derived in the book for a free energy difference, FII − FI , between two
systems which are identical (same number of particles, density, temperature, etc.) except that they
obey two different potentials. System I obeys UI and System II UII . To measure this free energy
difference, we must integrate along a reversible path from I to II. So let us suppose that we can write
a “metapotential” that uses a switching parameter, λ, to measure distance along this path. So, when
λ = 0, we are in System I, and when λ = 1 we are in System II. One way we might encode this (though
this is not necessarily a general splitting, as we shall see below) is

U (λ) = (1− λ) UI + λUII (316)

Let us consider the canonical partition function for a system obeying a general potential U (λ):

Q (N,V, T, λ) =
1

Λ3NN !

∫
drN exp [−βU (λ)] (317)

Recalling that the free energy is given by F = −kBT lnQ, we can express the derivative of the
Helmholtz free energy with respect to λ:(

∂F (λ)

∂λ

)
N,V,T

= − 1

β

∂

∂λ
lnQ (N,V, T, λ) (318)

= − 1

βQ (N,V, T, λ)

∂Q (N,V, T, λ)

∂λ
(319)

=

∫
drN (∂U (λ) /∂λ) exp [−βU (λ)]∫

drN exp [−βU (λ)]

The free energy difference between I and II is given by:

FII − FI =

∫ λ=1

λ=0

〈
∂U

∂λ

〉
λ

dλ (320)

where,
〈
∂U
∂λ

〉
λ

is the ensemble average of the derivative of U with respect to λ.

111

10 FREE ENERGY METHODS

To compute µex, we imagine two systems: System I has N − 1 “real” particles, and 1 ideal gas
particle, and system II has N real particles. The two free energies can be written:

FI = Fid (N,V, T) + Fex (N − 1, V, T) (321)

FII = Fid (N,V, T) + Fex (N,V, T) (322)

For large values of N , we see that µex = FII−FI. So, we have another route to compute µex. First,
we tag a particle iλ, call it the “λ-particle”, and apply the following modified potential to its pairwise
interactions:

ULJ,λ (r;λ) = 4
(
λ5r−12 − λ3r−6

)
(323)

So, the total potential is given by

U =
∑
i<j

′
ULJ (rij) +

∑
i

ULJ,λ (ri,iλ ;λ) (324)

where the prime denotes that we ignore particle iλ in the sum. When λ = 1, all particles interact fully,
and we have System II.

Next, we conduct many independent MC simulations at various values of λ and a given value of
ρ and T , generating for each (T, ρ) a table of 〈∂U /∂λ〉λ vs. λ which can be integrated to yield a
single value for µex. The code mclj_ti.c implements this sampling when a value for λ is specified. To
demonstrate its use to compute µex, the following protocol was used:

1. Run 600,000-cycle NVT λ-MC simulations at given density ρ and temperature T (with N = 216
particles) for values of λ ∈ {0, 0.1, 0.2, . . . , 1} to compute 〈dU /dλ〉. Three independent simula-
tions are run for each N -ρ-T -λ point, and 〈dU /dλ〉 is an average over these three.

2. Use Simpson’s rule in scipy.integrate.simpson to numerically integrate 〈dU /dλ〉 vs. λ to
obtain µex.

This turns out to be an expensive way to compute the chemical potential for a Lennard-Jones fluid,
compared to the Widom method (Sec. 10.1) or grand canonical MC (Sec. 6.1), for at least low to
moderate densities. At very high densities, however, particle insertion moves in grand canonical and
Widom-method simulations become difficult. Fig. 40 shows a plot of 〈dU /dλ vs. λ for various densities,
all at T = 3.0 (left), with values of µex found from integrating those curves shown together with the data
from Fig. 39 showing µex from both grand canonical MC and the Widom method.

The curves of 〈dU /dλ〉 vs λ are not completely noise-free, but integrating each of these curves
to produce a single value of µex produces values that are not too off from the grand canonical and
Widom-method simulations.

10.3 The Method of Overlapping Distributions
One interesting feature of the Widom method is that the only trial move is insertion; however, the

free-energy difference between an N -particle system and an N + 1-particle system should not depend
on which direction the trial moves take. If we imagine a “Widom real-particle removal” method, we’d
write the chemical potential as

µ = +kBT ln (QN/QN+1) = µid + kBT ln〈exp (+β∆U)〉 (325)

Sampling 〈exp (+β∆U)〉 in a straightforward NVT MC simulation won’t work, however, because...
There is, however, a right way to use bidirectional energy changes to compute free-energy dif-

ferences, termed the “overlapping distribution method” and attributed to Bennett [44]. Consider two

112

10 FREE ENERGY METHODS

Figure 40: (left) 〈dU /dλ vs. λ for the Lennard-Jones fluid for three values of ρ at T = 3.0, computed from MC
simulations of 216 particles for 6×106 cycles. Five independent simulations were run for each (ρ, λ), and values
of 〈dU /dλ are averaged over these five. Standard deviations a smaller than the symbol size. (right) Overlay of
µex vs ρ at T = 3.0 using grand canonical MC, the Widom method, and thermodynamic integration.

systems 0 and 1, obeying potentials U0 and U1, respectively. Let qi be the scaled configurational
integral of the Boltzmann factor:

qi =

∫
dsNe−βUi (326)

We can then express the free energy difference between these systems as (assuming for simplicity
they have the same volumes):

β∆F = − ln
q1

q0
(327)

Consider next we run an NVT MC simulation on U1 and sample ∆U ≡ U1 − U0. Formally, the
probability density of ∆U from this simulation is

p1(∆U) =

∫
dsNe−βU1δ(U1 −U0 −∆U)

q1
(328)

=

∫
dsNe−β(U0+∆U)δ(U1 −U0 −∆U)

q1
(329)

=
q0

q1
e−β∆U 1

q0

∫
dsNe−βU0δ(U1 −U0 −∆U) (330)

=
q0

q1
e−β∆U p0(∆U) (331)

In going from Eq. 329 to 330 we have used the fact that the Dirac delta function will only permit one
value of ∆U to survive integration. Taking the log of both sides gives

ln p1(∆U) = − ln
q1

q0
− β∆U + ln p0(∆U) (332)

= β(∆F −∆U) + ln p0(∆U) (333)

113

10 FREE ENERGY METHODS

This equation provides a way to estimate ∆F at any one value of ∆U so long as good estimates of
both p1(∆U) and p0(∆U) are available. That means we must be able to sample a sufficiently large
domain of ∆U from both a simulation run on U1 and another run on U0. That is, there must be a
domain of ∆U where p1 and p0 overlap.

Bennett[44] suggests the following transformation of p1 and p0 to permit easy calculation of ∆F .
Letting

f0(∆U) ≡ ln p0(∆U)− β∆U

2
, and (334)

f1(∆U) ≡ ln p1(∆U) +
β∆U

2
(335)

gives
β∆F = f1(∆U)− f0(∆U). (336)

This means we can measure f1 and f0 in separate simulations, and then observe a constant offset
between them to be β∆F .

Suppose we now take the example of system 1 with N real particles and system 0 with N − 1
real particles and one ideal-gas particle. The free-energy change from 0 to 1 is the excess chemical
potential (yet again!). Fig. 41 illustrates using Bennett’s method to compute µex of the Lennard-Jones
fluid at T = 1.2 for a few different densities. For each density, two simulations were run: simulation-0
computes the distribution of ∆U , the energy associated with converting the ideal-gas particle to a real
particle, while simulation-1 computes the same distribution for converting a randomly chosen particle
from being an ideal-gas particle to being a real particle. This latter ∆U is easily computed using the
single-particle energy function e_i. It is important to note that the direction of the ∆ is from ideal-gas to
real for both simulations. Note too that since we sample ∆U for particle insertion in simulation-0, we
can just as easily compute the expectation 〈exp(−β∆U)〉 and thereby get a direct estimate of βµex.

At the moderately low density of ρ = 0.7, we see a clear constant offset βµex between f0 and f1.
Note clear agreement between the offset over a finite-size domain of U and the single-point Widom
estimate. For the somewhat higher density of 0.9, the offset is a bit noisier, reflecting somewhat poorer
sampling. For the highest density, the sampling in simulation-0 is so poor that it is nearly impossible to
detect an overlap domain.

10.4 Histogram Reweighting
To further generalize our discussion of free-energy methods, it is convenient to introduce the con-

cept of the “order parameter” z which is computed by a mapping function θ(rN), which is generally just
any function of configuration (for example, ∆U = U1 − U0). For a system obeying the potential U0,
we can define the order parameter probability density as

p0 =

∫
rNe−βU0δ

[
z − θ(rN)

]
Z0

(337)

where we are using the shorthand

Z0 =

∫
rNe−βU0 (338)

to represent (now the unscaled) configurational integral of the Boltzmann factor. The “Landau” free
energy is then expressed as

FLandau(z) = −kBT ln p0(z) (339)

114

10 FREE ENERGY METHODS

Figure 41: p0 and p1 vs ∆U (left), and f0, f1, f1 - f0 vs ∆U (right) computed using NVT MC simulations at T
= 1.2 of system-0 and system-1, for densities of 0.7 (top), 0.9 (middle), and 1.0 (bottom). Estimates of βµex from
Widom test-particle insertion are shown as red horizontal lines in the plots on the right.

We’d generally like to be able to compute p0 or, alternatively, FLandau, but as we have already seen, it is
often impossible to perform adequate sampling over an entire range of order parameter. Suppose we
restrict sampling to a region in order parameter space using a “bias potential” Wi(θ(r

N)). Under the

115

10 FREE ENERGY METHODS

action of this bias, we can compute directly a biased probability density:

pi(z) =

∫
rNe−β[U0+Wi(z)]δ

[
z − θ(rN)

]
Zi

(340)

where we use the shorthand
Zi =

∫
rNe−β[U0+Wi(θ(r

N))] (341)

Note that in Eq. 340, we have made use of the fact that the Dirac delta function only permits θ(rN) to
equal z, so we do not need to express the argument of Wi as θ(rN) in the numerator. This is important,
because it allows us to express the unbiased probability density:

p0(z) = exp(+βWi(z))
Zi
Z0
pi(z) (342)

Let’s now consider that we compute pi by histogramming into bins of constant width ∆z. Let’s call
the histogram Hi and the total number of hits in the histogram Mi. Then one way to write the relation
between the approximate probability density and the histogram is

pi∆z =
Hi

Mi
(343)

Now we imagine we can use several different Wi’s together, each of which focus sampling on a
particular region of order-parameter space, and we propose that the unbiased probability density can
be constructed by a superposition of the biased probabilities:

p0(z) =

n∑
i=1

ai(z) exp(+βWi(z))
Zi
Z0
pi(z) (344)

⇒ p0(z)∆z =
n∑
i=1

ai(z) exp(+βWi(z))
Zi
Z0

Hi(z)

Mi
(345)

subject to
n∑
i=1

ai(z) = 1 for all z (346)

In Eq. 345, we have supposed that p0∆z is a normalized histogram with the same bin size ∆z as all
Hi.

Via minimization of the squared fluctuations of p0(z) (since it will fluctuate in a simulation), one can
arrive at an expression for ai (math not shown):

ai(z) = α(z) exp[−βWi(z)]Mi
Z0

Zi
(347)

where the normalization condition is met by

α(z) =
1

n∑
i=1

exp[−βWi(z)]Mi
Z0

Zi

(348)

116

10 FREE ENERGY METHODS

This gives a reweighted histogram of

p0(z)∆z =

n∑
i=1

Hi

n∑
i=1

exp[−βWi(z)]Mi
Z0

Zi

(349)

Now, let’s define Fi via

expβFi = −Zi
Z0

(350)

=

∫
drNe−β(U0+Wi)

Z0
(351)

=

∫
dz

∫
rNe−β(U0+Wi)δ(θ(rN)− z)

Z0
(352)

=

∫
dz e−βWi(z)

∫
rNe−βU0δ

[
z − θ(rN)

]
Z0

(353)

=

∫
dz p0(z)e−βWi(z) (354)

⇒ Fi = − 1

β
ln

∫
dz p0(z)e−βWi(z) (355)

This allows us to write the unbiased histogram as

p0(z)∆z =

n∑
i=1

Hi

n∑
j=1

exp[−β(Wj(z)− Fj)]Mj

(356)

Given that we have a finite bin width, the integration in Eq. 355 can be approximated as

Fj = − 1

β
ln

nbins−1∑
k=0

p0(zk) exp[−βWj(zk)]∆z (357)

where zk = zmin + (k + 1
2)∆z, with zmin the lower bound of the histogram domain and nbins is the

number of bins.
Eq. 356 and 357 are called (by some) the WHAM equations (for Weighted Histogram Analysis

Method [45]). They can be solved iteratively to yield an unbiased probability provided with a set of bi-
ased histogramsHi obtained from running MC simulations on U0 +Wi. The standard WHAM approach
is
• Set Fj = 0 for all j.
• Compute the first estimate of p0 using Eq. 356 from the Hi’s and Mi’s.
• Compute a new estimate for the Fj ’s using Eq. 357.
• Repeat the last two steps until the Fj ’s stop changing within some tolerance.

117

10 FREE ENERGY METHODS

As an example, consider a single degree of freedom x (our “particle”) moving under Brownian
dynamics (BD) on a quartic two-well potential:

ẋ = −1

γ

dV

dx
+
√

2kBT/γη, where (358)

V (x) = a(x2 − 1)2 + bx2 + cx (359)

Here, γ is the BD friction, T is the temperature, and η is a random variate centered on zero with unit
variance. A symmetrical two-well potential with a barrier at x = 0 of about 13 can be had by using
a = 0.02, b = -1, and c = 0. Since there is only one degree of freedom, it can easily be shown that
F (x) = V (x). So, if we run BD, sampling x and then histogramming it into p0, then we should see
that F = −kBT ln p0 and V agree. Computing F from a directly histogrammed variable is sometimes
called “Boltzmann inversion”.

Fig. 42 shows the calculation of F using this approach, with BD on V using the code bd-w.c. We
show that sampling with a reduced temperature of 10 requires about 2 billion BD timesteps to reproduce
V . If we reduce the temperature to 1, the large barrier between the two wells is not surmounted and V
is therefore not correctly reproduced.

Figure 42: Boltzmann inversion from 1-D Brownian dynamics simulations obeying the potential V in Eq. 359.
(Left) BD run at T = 1.0; (right) BD run at T = 10.0. Each simulation was run for 2× 109 steps of length 1× 10−3.

Fig. 43 shows that V can be reproduced at T of 1.0 using WHAM using 21 windows and harmonic
bias potentials Wi spaced uniformly along z, each with a k of 20. That is, each bias potential is of the
form

Wi(z) =
1

2
k(z − z0,i)

2 (360)

where z0,i’s are uniformly spaced between -10 and 10. (Actually, -10 and 10 are the domain boundaries;
this domain of size 20 is divided into 21 windows, and each z0 is in the center of its window. So,
z00 = −10 + 0.5(20/21) = −9.5238, etc. An odd number of windows is a good idea so that we can
better resolve the tippy top of the barrier.)

Here, only two million BD steps were run per window, for a total of 42 million steps. This means
this WHAM dataset required more than twenty times less BD sampling at a temperature of 1.0 than the
brute force sampling approach could at a temperature of 10.0.

As a second example of WHAM, consider MD simulation of butane molecule in vacuum at T = 310
K. One order parameter we may consider here is the C1-C4 distance. When the molecule is in trans, the
C1-C4 distance is about 4.5 Å, while when it is in gauche, the C1-C4 distance is about 3.2 Å. We expect
there to be a small free-enegy barrier between these two states when characterized using the C1-C4

118

10 FREE ENERGY METHODS

Figure 43: WHAM results from BD simulations on V from Eq. 359. (Left) V (x) and allWi(x); each z0 is uniformly
spaced along z, and k is 20. (Center) All biased histograms Hi(x) from BD simulations of 2 × 106 steps at T =
1.0, with a scaled unbiased histogram p0 (scaled for visibility). (Right) Reconstructed F (x) and V (x) (again).

distance. Fig. 44 shows results of both WHAM and long MD simulations, showing indeed that the trans
and gauche states are separated by a small barrier of about 2 kcal/mol at 310 K, easily surmountable
in MD. WHAM reconstruction of F from 20 biased histograms generated from MD restrained using
harmonic window potentials with spring constants of 100 kcal/mol-Å2 shows perfect agreement with the
Boltzmann-inverted result.

Figure 44: (Left) A butane molecule with the C1-C4 distance indicated by a purple line. (Center) Biased his-
tograms from window-restrained MD simulations of butane in vacuum at 310 K. Windows are distributed uniformly
along the C1-C4 distance variable. (Right) Free energy vs C1-C4 distance computed using Boltzmann inversion
from a long MD simulation (grey dashes) and from WHAM (blue solid).

Butane is an almost trivially simple case; the C1-C4 distance is relatively easily sampled in standard
MD at 310 K in few million time-steps. This is of course evident because we can generate a Boltzmann-
inverted free energy directly from the histogram of this distance generated by MD. But it is important
to note that the order parameter here, the C1-C4 distance, has a small amount of degeneracy: every
value of this parameter except for its minimum and maximum has two major realizations determined by
positive and negative senses of the dihedral angle. (There are of course some minor realizations due
to angle stretching.) That means that each window’s simulation should sample both the positive and
negative regions of the order parameter space, and we must take care that the window potential is not

119

10 FREE ENERGY METHODS

so strong that these dihedral angle fluctuations cannot occur; if so, we would undersample the gauche
states for sure. Fig. 45 shows traces of the C1-C4 distance for each window and corresponding traces
of the dihedral angle; clearly for this value of k, each window is indeed able to sample both positive and
negative values of the dihedral angle.

Figure 45: (Left) C1-C4 distance vs. time for each of 16 windows. (Right) Dihedral angle vs. time for each of 16
windows.

10.5 Adaptive Free-Energy Methods
The histogram reweighting approach has a lot of parameters that have to be optimized in order to

generate a reliable F : the number of windows, the spring constant for the window potentials, how the
windows are spaced, how much sampling in each window, and more. This is often a problem because
without knowing something about F it is hard to guess the best set of WHAM parameters. This has
led to the development of “adaptive” approaches that aim to overcome this supposed weakness of
histogram reweighting.

The two most well-known adaptive biasing approaches are metadynamics [46] and the adaptive-
biasing forces (ABF) method [47].

120

10 FREE ENERGY METHODS

10.5.1 Metadynamics
10.5.1.1 Original Metadynamics

In metadynamics, a time-dependent bias potential is “grown” during the course of the simulation that
acts to enhance sampling of the order parameter [48]. Rather than confining to local regions of order
parameter space as in umbrella sampling, the metadynamics potential pushes the system away from
easily sampled regions of order parameter space. This bias can be expressed:

Vb(θ, t) = w
∑
t′<t

exp

(
− [θ(t′)− θ(t)]2

2σ2

)
(361)

Here, w is a weight of each Gaussian kernel deposited, and σ is its width. Apart from them, another
key parameter in running metadynamics is how frequently a new Gaussian kernel is added, i.e., what
is the list of values for t′? Apart from an irrelevant constant, the free energy along the order parameter
is the time-average of the bias potential

F (θ) = − 1

tf − ti

tf∑
t=ti

Vb [θ(t)] (362)

NAMD includes native support for metadynamics using the colvars module. By default, kernels are
deposited every 1,000 steps. To illustrate metadynamics, we return to the system of a single molecule
of butane, this time at 273 K. It requires a 100-million time-step MD simulation to generate a smooth
histogram for the C1-C4 distance at this temperature. Fig. 46 shows the free energy vs C1-C4 distance
computed using a 10-million time-step metadynamics simulation for which w = 0.1 kcal/mol, and σ =
0.1 Å. We see excellent reconstruction of the true free energy at a much lower computational cost with
metadynamics.

This 107-time-step metadynamics simulation deposited 10,000 Gaussian kernels in total. Generally,
it is most efficient for the simulation to keep track of the bias potential on a grid rather than as an explicit
sum of Gaussians. Here, the order-parameter line was divided into increments of 0.02 Å between
1.5 and 5.5 Å, or roughly 400 points. Fig. 47 shows the evolution of the bias potential Vb(t) from this
simulation.

The accuracy of metadynamics is fairly sensitive to w and σ. Fig. ?? shows free energies for the
butane system at 273 K computing using metadynamics (and the long MD for reference) using various
combinations of w and σ, all for 107 steps. Among those considered, it appears w = 0.1 kcal/mol, and
σ = 0.1 Å are the best choices. Generally, smaller w will yield more accurate free energies, but at larger
computational cost.

10.5.1.2 Well-Tempered Metadynamics

In the well-tempered variant [49] of metadynamics, The weight w is augmented with a Boltzmann factor
that diminishes exponentially as Vb builds up:

Vb(θ, t) = w
∑
t′<t

exp

[
−Vb(θ(t

′))

∆T

]
exp

(
− [θ(t′)− θ(t)]2

2σ2

)
(363)

∆T is the so-called “bias temperature”, and it acts to diminish the contribution to Vb at any θ as time
progresses, leading to a converged bias potential. The free energy is reconstructed by an inversion of

121

10 FREE ENERGY METHODS

Figure 46: Free energy in kcal/mol vs. C1-C4 distance in Å, for butane in vacuum at 273 K computed using MD
(green dash) and metadynamics (black solid). The MD simulation was run for 108 timesteps, and the metady-
namics for 107. Intermediate values of the metadynamics free energy are also shown color-coded from purple
(early) to yellow (late). The final metadynamics free energy is the average over all free-energy snapshots (i.e., it
is the time-average negative bias potential).

the converged bias potential that requires the bias temperature:

F = −T + ∆T

∆T
Vb (364)

Fig. 48 shows the free energy vs. C1-C4 distance for butane at 273 K computed using well-tempered
metadynamics with parameters identical to the standard metadynamics run of the previous section but
with a bias temperature of 1000 K.

10.5.2 ABF
The adapative biasing force method is based on recovery of free energies as functions of order pa-

rameters via thermodynamic integration of mean forces. These mean forces are traditionally computed
using MD simulations restrained (or constrained, depending) to particular values of the order param-
eter. Indeed, one way of doing this is tethering the system to a reference point with a harmonic bias
potential, just as we did for the histogram reweighting approach above. In the TI formalism, however, it
can be shown that the gradient of the free energy along order parameter is

122

10 FREE ENERGY METHODS

Figure 47: Evolution of the bias potential from the 107-step metadynamics simulation of butane along the C1-C4
distance. The instantaneous bias potential is drawn every 105 time-steps and shifted to its current minimum
value. Each curve is drawn with an α of 0.2, so where the curves appear opaque signifies a temporarily static
portion of the bias as kernels are being deposited elsewhere.

Fig. 49 shows the evolution of the PMF, along with the order-parameter histogram and free-energy
gradients, from a single ABF simulation of butane at 273 K using NAMD.

123

10 FREE ENERGY METHODS

Figure 48: Free energy in kcal/mol vs. C1-C4 distance in Å, for butane in vacuum at 273 K computed using
MD (green dash) and well-tempered metadynamics (black solid). The MD simulation was run for 108 timesteps,
and the metadynamics for 107. The bias temperature for well-biased metadynamics was 1000 K. Intermediate
values of the metadynamics free energy are also shown color-coded from purple (early) to yellow (late). The final
metadynamics free energy is the average over all free-energy snapshots (i.e., it is the time-average negative bias
potential).

124

10 FREE ENERGY METHODS

Figure 49: Potentials of mean force converging to a final form in an ABF simulation of butane at 273 K, where
the order parameters z is the C1-C4 distance. Insets show the histogram of z (top) and the convergence of the
free-energy gradients (bottom).

125

REFERENCES

References
[1] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Applications.

Academic Press, San Diego, 2 edition, 2002.

[2] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York,
1987.

[3] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114. URL https://doi.org/10.1063/1.
1699114.

[4] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of
Lennard-Jones Molecules. Physical Review, 159(1):98–103, 7 1967. ISSN 0031-899X. doi:
10.1103/PhysRev.159.98. URL https://link.aps.org/doi/10.1103/PhysRev.159.98.

[5] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R. Wilson. A computer simu-
lation method for the calculation of equilibrium constants for the formation of physical clusters of
molecules: Application to small water clusters. The Journal of Chemical Physics, 76(1):637–649,
1982. doi: 10.1063/1.442716. URL https://doi.org/10.1063/1.442716.

[6] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics.
The Journal of Chemical Physics, 97(3):1990, 1992. ISSN 00219606. doi: 10.1063/1.463137.
URL http://link.aip.org/link/JCPSA6/v97/i3/p1990/s1&Agg=doi.

[7] H. Flyvbjerg and H. G. Petersen. Error estimates on averages of correlated data. The Journal
of Chemical Physics, 91(1):461–466, 1989. doi: 10.1063/1.457480. URL https://doi.org/10.
1063/1.457480.

[8] Edward J. Maginn, Richard A. Messerly, Daniel J. Carlson, Daniel R. Roe, and J. Richard Elliott.
Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium
Molecular Dynamics [Article v1.0]. Living Journal of Computational Molecular Science, 1(1):1–20,
2019. doi: 10.33011/livecoms.1.1.6324.

[9] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular
dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8):3684–3690,
10 1984. ISSN 0021-9606. doi: 10.1063/1.448118. URL http://aip.scitation.org/doi/10.
1063/1.448118.

[10] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. The
Journal of Chemical Physics, 72(1980):2384, 1980. ISSN 00219606. doi: 10.1063/1.439486. URL
http://scitation.aip.org/content/aip/journal/jcp/72/4/10.1063/1.439486.

[11] GS Grest and K Kremer. Structure of many arm star polymers: a molecular dynamics simula-
tion. Macromolecules, 20:1376–1383, 1987. URL http://pubs.acs.org/doi/abs/10.1021/
ma00172a035.

[12] P Nikunen. How would you integrate the equations of motion in dissipative particle dynamics
simulations? Computer Physics Communications, 153(3):407–423, 7 2003. ISSN 00104655.
doi: 10.1016/S0010-4655(03)00202-9. URL http://linkinghub.elsevier.com/retrieve/
pii/S0010465503002029.

126

https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://doi.org/10.1063/1.442716
http://link.aip.org/link/JCPSA6/v97/i3/p1990/s1&Agg=doi
https://doi.org/10.1063/1.457480
https://doi.org/10.1063/1.457480
http://aip.scitation.org/doi/10.1063/1.448118
http://aip.scitation.org/doi/10.1063/1.448118
http://scitation.aip.org/content/aip/journal/jcp/72/4/10.1063/1.439486
http://pubs.acs.org/doi/abs/10.1021/ma00172a035
http://pubs.acs.org/doi/abs/10.1021/ma00172a035
http://linkinghub.elsevier.com/retrieve/pii/S0010465503002029
http://linkinghub.elsevier.com/retrieve/pii/S0010465503002029

REFERENCES

[13] Thomas Soddemann, Burkhard Dünweg, and Kurt Kremer. Dissipative particle dynamics: A useful
thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Physical Review
E, 68(4):1–8, 10 2003. ISSN 1063-651X. doi: 10.1103/PhysRevE.68.046702. URL http://link.
aps.org/doi/10.1103/PhysRevE.68.046702.

[14] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik,
369(3):253–287, 1921. ISSN 00033804. doi: 10.1002/andp.19213690304. URL http://doi.
wiley.com/10.1002/andp.19213690304.

[15] Markus Deserno and Christian Holm. How to mesh up Ewald sums. I. A theoretical and numerical
comparison of various particle mesh routines. The Journal of chemical physics, 109(18):7678,
1998. URL http://link.aip.org/link/?JCPSA6/109/7678/1.

[16] Markus Deserno. 3 Efficient electrostatics : Ewald Sum and Particle Mesh Ewald Algorithms. PhD
thesis, 1999.

[17] Judith A. Harrison, J. David Schall, Sabina Maskey, Paul T. Mikulski, M. Todd Knippenberg, and
Brian H. Morrow. Review of force fields and intermolecular potentials used in atomistic com-
putational materials research. Applied Physics Reviews, 5(3), 2018. ISSN 19319401. doi:
10.1063/1.5020808. URL http://dx.doi.org/10.1063/1.5020808.

[18] Bernard R. Brooks, Robert E. Bruccoleri, Barry D. Olafson, David J. States, S. Swaminathan, and
Martin Karplus. CHARMM: A program for macromolecular energy, minimization, and dynamics
calculations. Journal of Computational Chemistry, 4(2):187–217, 1983. ISSN 1096987X. doi:
10.1002/jcc.540040211.

[19] B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis,
C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao,
M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B.
Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M.
York, and M. Karplus. CHARMM: The biomolecular simulation program. Journal of Computational
Chemistry, 30(10):1545–1614, 7 2009. ISSN 0192-8651. doi: 10.1002/jcc.21287. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21287.

[20] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fis-
cher, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mat-
tos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich,
J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus.
All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins †.
The Journal of Physical Chemistry B, 102(18):3586–3616, 4 1998. ISSN 1520-6106. doi:
10.1021/jp973084f. URL http://pubs.acs.org/doi/abs/10.1021/jp973084fhttps://pubs.
acs.org/doi/10.1021/jp973084f.

[21] Paul K. Weiner and Peter A. Kollman. AMBER: Assisted model building with energy refine-
ment. A general program for modeling molecules and their interactions. Journal of Computa-
tional Chemistry, 2(3):287–303, 1981. ISSN 0192-8651. doi: 10.1002/jcc.540020311. URL
http://doi.wiley.com/10.1002/jcc.540020311.

[22] Xavier Daura, Alan E. Mark, and Wilfred F. Van Gunsteren. Parametrization of aliphatic CHn united
atoms of GROMOS96 force field. Journal of Computational Chemistry, 19(5):535–547, 1998. ISSN
01928651. doi: 10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N.

127

http://link.aps.org/doi/10.1103/PhysRevE.68.046702
http://link.aps.org/doi/10.1103/PhysRevE.68.046702
http://doi.wiley.com/10.1002/andp.19213690304
http://doi.wiley.com/10.1002/andp.19213690304
http://link.aip.org/link/?JCPSA6/109/7678/1
http://dx.doi.org/10.1063/1.5020808
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21287
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21287
http://pubs.acs.org/doi/abs/10.1021/jp973084f https://pubs.acs.org/doi/10.1021/jp973084f
http://pubs.acs.org/doi/abs/10.1021/jp973084f https://pubs.acs.org/doi/10.1021/jp973084f
http://doi.wiley.com/10.1002/jcc.540020311

REFERENCES

[23] William L. Jorgensen, Jeffry D. Madura, and Carol J. Swenson. Optimized Intermolecular Potential
Functions for Liquid Hydrocarbons. Journal of the American Chemical Society, 106(22):6638–
6646, 1984. ISSN 15205126. doi: 10.1021/ja00334a030.

[24] William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal
of the American Chemical Society, 118(45):11225–11236, 1996. ISSN 00027863. doi: 10.1021/
ja9621760.

[25] Marcus G. Martin and J. Ilja Siepmann. Transferable potentials for phase equilibria. 1. United-
atom description of n-alkanes. Journal of Physical Chemistry B, 102(14):2569–2577, 1998. ISSN
15206106. doi: 10.1021/jp972543+.

[26] Pedro E.M. Lopes, Benoit Roux, and Alexander D. MacKerell. Molecular modeling and dynamics
studies with explicit inclusion of electronic polarizability: Theory and applications. Theoretical
Chemistry Accounts, 124(1-2):11–28, 2009. ISSN 1432881X. doi: 10.1007/s00214-009-0617-x.

[27] K. Vanommeslaeghe and A. D. Mackerell. CHARMM additive and polarizable force fields for
biophysics and computer-aided drug design. Biochimica et Biophysica Acta - General Sub-
jects, 1850(5):861–871, 2015. ISSN 18728006. doi: 10.1016/j.bbagen.2014.08.004. URL
http://dx.doi.org/10.1016/j.bbagen.2014.08.004.

[28] Murray S. Daw and M. I. Baskes. Embedded-atom method: Derivation and application to impu-
rities, surfaces, and other defects in metals. Physical Review B, 29(12):6443–6453, 1984. ISSN
01631829. doi: 10.1103/PhysRevB.29.6443.

[29] Cameron F. Abrams and David B. Graves. Three-dimensional spatiokinetic distributions of sput-
tered and scattered products of Ar+ and Cu+ impacts onto the Cu surface: Molecular dynamics
simulations. IEEE Transactions on Plasma Science, 27(5):1426–1432, 1999. ISSN 00933813.
doi: 10.1109/27.799821.

[30] G. C. Abell. Empirical chemical pseudopotential theory of molecular and metallic bonding. Physical
Review B, 31(10):6184–6196, 5 1985. ISSN 0163-1829. doi: 10.1103/PhysRevB.31.6184. URL
https://link.aps.org/doi/10.1103/PhysRevB.31.6184.

[31] J. Tersoff. New empirical model for the structural properties of silicon. Physical Review Letters, 56
(6):632–635, 2 1986. ISSN 0031-9007. doi: 10.1103/PhysRevLett.56.632. URL https://link.
aps.org/doi/10.1103/PhysRevLett.56.632.

[32] Donald W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapor
deposition of diamond films. Physical Review B, 42(15):9458–9471, 1990. ISSN 01631829. doi:
10.1103/PhysRevB.42.9458.

[33] Steven J. Stuart, Alan B. Tutein, and Judith A. Harrison. A reactive potential for hydrocarbons
with intermolecular interactions. Journal of Chemical Physics, 112(14):6472–6486, 2000. ISSN
00219606. doi: 10.1063/1.481208.

[34] Jianguo Yu, Susan B. Sinnott, and Simon R. Phillpot. Charge optimized many-body potential for
the Si/SiO2 system. Physical Review B - Condensed Matter and Materials Physics, 75(8):1–13,
2007. ISSN 10980121. doi: 10.1103/PhysRevB.75.085311.

128

http://dx.doi.org/10.1016/j.bbagen.2014.08.004
https://link.aps.org/doi/10.1103/PhysRevB.31.6184
https://link.aps.org/doi/10.1103/PhysRevLett.56.632
https://link.aps.org/doi/10.1103/PhysRevLett.56.632

REFERENCES

[35] M Todd Knippenberg, Paul T Mikulski, Kathleen E Ryan, Steven J Stuart, Guangtu Gao, and
Judith A Harrison. Bond-order potentials with split-charge equilibration: Application to C-, H-, and
O-containing systems. The Journal of Chemical Physics, 136(16):164701, 4 2012. ISSN 0021-
9606. doi: 10.1063/1.4704800. URL http://aip.scitation.org/doi/10.1063/1.4704800.

[36] Thomas P. Senftle, Sungwook Hong, Md Mahbubul Islam, Sudhir B. Kylasa, Yuanxia Zheng,
Yun Kyung Shin, Chad Junkermeier, Roman Engel-Herbert, Michael J. Janik, Hasan Metin Ak-
tulga, Toon Verstraelen, Ananth Grama, and Adri C.T. Van Duin. The ReaxFF reactive force-field:
Development, applications and future directions. npj Computational Materials, 2(September 2015),
2016. ISSN 20573960. doi: 10.1038/npjcompumats.2015.11. URL http://dx.doi.org/10.
1038/npjcompumats.2015.11.

[37] Michael F. Russo and Adri C.T. van Duin. Atomistic-scale simulations of chemical reactions:
Bridging from quantum chemistry to engineering. Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, 269(14):1549–1554, 7 2011.
ISSN 0168583X. doi: 10.1016/j.nimb.2010.12.053. URL https://linkinghub.elsevier.com/
retrieve/pii/S0168583X10009869.

[38] F.H. Stillinger and T.A. Weber. Computer simulation of local order in condensed phases of sili-
con. Physical Review B, 31(8):5262, 1985. URL http://prb.aps.org/abstract/PRB/v31/i8/
p5262_1.

[39] H BEKKER, HJC BERENDSEN, EJ DIJKSTRA, S ACHTEROP, R VONDRUMEN, D VANDER-
SPOEL, A SIJBERS, H Keegstra, and MKR RENARDUS. Gromacs - a parallel computer for
molecular-dynamics simulations. In RA DeGroot and J Nadrchal, editors, PHYSICS COMPUTING
’92, pages 252–256. World Scientific Publishing, 1993. ISBN 981-02-1245-3. 4th International
Conference on Computational Physics (PC 92) ; Conference date: 24-08-1992 Through 28-08-
1992.

[40] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth
Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kalé, and Klaus Schulten. Scalable molecular
dynamics with NAMD. Journal of computational chemistry, 26(16):1781–802, 12 2005. ISSN 0192-
8651. doi: 10.1002/jcc.20289. URL http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2486339&tool=pmcentrez&rendertype=abstract.

[41] Kefang Liu, Shuguang Tan, Sheng Niu, Jia Wang, Lili Wu, Huan Sun, Yanfang Zhang, Xiaoqian
Pan, Xiao Qu, Pei Du, Yumin Meng, Yunfei Jia, Qian Chen, Chuxia Deng, Jinghua Yan, Hong-Wei
Wang, Qihui Wang, Jianxun Qi, and George Fu Gao. Cross-species recognition of SARS-CoV-2
to bat ACE2. Proceedings of the National Academy of Sciences, 118(1):e2020216118, 1 2021.
ISSN 0027-8424. doi: 10.1073/pnas.2020216118. URL http://www.pnas.org/lookup/doi/10.
1073/pnas.2020216118.

[42] Cameron Abrams and Giovanni Bussi. Enhanced Sampling in Molecular Dynamics Using Meta-
dynamics, Replica-Exchange, and Temperature-Acceleration. Entropy, 16(1):163–199, 12 2013.
ISSN 1099-4300. doi: 10.3390/e16010163. URL http://www.mdpi.com/1099-4300/16/1/163.

[43] Ilario G. Tironi and Wilfred F. Van Gunsteren. A molecular dynamics simulation study of chloroform.
Molecular Physics, 83(2):381–403, 10 1994. ISSN 0026-8976. doi: 10.1080/00268979400101331.
URL http://www.tandfonline.com/doi/abs/10.1080/00268979400101331.

129

http://aip.scitation.org/doi/10.1063/1.4704800
http://dx.doi.org/10.1038/npjcompumats.2015.11
http://dx.doi.org/10.1038/npjcompumats.2015.11
https://linkinghub.elsevier.com/retrieve/pii/S0168583X10009869
https://linkinghub.elsevier.com/retrieve/pii/S0168583X10009869
http://prb.aps.org/abstract/PRB/v31/i8/p5262_1
http://prb.aps.org/abstract/PRB/v31/i8/p5262_1
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2486339&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2486339&tool=pmcentrez&rendertype=abstract
http://www.pnas.org/lookup/doi/10.1073/pnas.2020216118
http://www.pnas.org/lookup/doi/10.1073/pnas.2020216118
http://www.mdpi.com/1099-4300/16/1/163
http://www.tandfonline.com/doi/abs/10.1080/00268979400101331

REFERENCES

[44] Charles H. Bennett. Efficient estimation of free energy differences from Monte Carlo data. Journal
of Computational Physics, 22(2):245–268, 1976. ISSN 10902716. doi: 10.1016/0021-9991(76)
90078-4.

[45] Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen, and Peter A Kollman.
THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The
method. Journal of Computational Chemistry, 13(8):1011–1021, 1992. ISSN 1096-987X. doi:
10.1002/jcc.540130812. URL http://dx.doi.org/10.1002/jcc.540130812.

[46] Giovanni Bussi and Alessandro Laio. Using metadynamics to explore complex free-energy
landscapes. Nature Reviews Physics, 2(4):200–212, 2020. ISSN 25225820. doi: 10.1038/
s42254-020-0153-0. URL http://dx.doi.org/10.1038/s42254-020-0153-0.

[47] Jeffrey Comer, James C. Gumbart, Jérôme Hénin, Tony Lelievre, Andrew Pohorille, and
Christophe Chipot. The adaptive biasing force method: Everything you always wanted to know but
were afraid to ask. Journal of Physical Chemistry B, 119(3):1129–1151, 2015. ISSN 15205207.
doi: 10.1021/jp506633n.

[48] Alessandro Laio and Michele Parrinello. Escaping free-energy minima. Proceedings of the
National Academy of Sciences of the United States of America, 99(20):12562–6, 10 2002.
ISSN 0027-8424. doi: 10.1073/pnas.202427399. URL http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=130499&tool=pmcentrez&rendertype=abstract.

[49] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered metadynamics: A
smoothly converging and tunable free-energy method. Physical Review Letters, 100(2):1–4, 2008.
ISSN 00319007. doi: 10.1103/PhysRevLett.100.020603.

130

http://dx.doi.org/10.1002/jcc.540130812
http://dx.doi.org/10.1038/s42254-020-0153-0
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=130499&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=130499&tool=pmcentrez&rendertype=abstract

	Introduction
	Course Objectives
	Course Outline
	Prerequisites
	Introductory Remarks

	Statistical Mechanics: A Brief Introduction
	Microstates and Degeneracy
	Making Observations: The Ergodic Hypothesis
	Entropy and Temperature
	Classical Statistical Mechanics

	Linux and Scientific Computing
	The Linux Ecosystem
	Handling Files and Directories at the Command-Line Interface
	Pathnames
	(Windows) Keeping your WSL Linux Distribution Up to Date
	Working Remotely

	Running Programs at the Command-Line
	Programs that are Compiled: C
	Programs that are Interpreted: Python

	Monte Carlo Simulation
	The Metropolis Monte Carlo Method
	Case Study 1: The 2D Ising Magnet
	Introduction
	A C Code for the 2D Ising Magnet
	Example: Average Energy and Magnetization vs. Temperature
	Suggested Exercises

	Elements of a Continuous-Space MC program
	Data Representation and Input/Output
	Analytical Potentials
	Trial Moves

	Case Study 2: MC of Hard Disks
	Case Study 3: Hard-Disk Dumbbells in 2D
	Case Study 4: Equation of State of the Lennard-Jones Fluid

	Molecular Dynamics Simulation
	MD: Theoretical Background
	Newtonian Mechanics and Numerical Integration
	The Liouville Operator Formalism to Generating MD Integration Schemes

	Case Study 1: An MD Code for the Lennard-Jones Fluid
	Introduction
	The Code

	Case Study 2: Static Properties of the Lennard-Jones Fluid
	Running the code
	Equilibration and Decorrelation
	Radial Distribution Functions and Postprocessing

	Case Study 3: Transport Properties: The Self-Diffusion Coefficient

	Ensembles
	Monte Carlo Simulations in the Isothermal-Isobaric and Grand Canonical Ensembles
	Isothermal-Isobaric
	Grand Canonical

	Molecular Dynamics at Constant Temperature
	Temperature Fluctuations in the Canonicial Ensemble
	Velocity Rescaling: Isokinetics and the Berendsen Thermostat
	Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics
	The Nosé-Hoover Chain

	Molecular Dynamics at Constant Pressure: The Berendsen Barostat

	Long-Range Interactions: The Ewald Summation
	The Ewald Coulombic energy
	Ewald Forces
	Implementation and Evaluation

	All-atom Potential Energy Functions
	Class-I Potentials
	Reactive Potentials
	Embedded Atom Method (EAM)
	Bond-Order Potentials
	ReaxFF

	Case Study: Stillinger-Weber Silicon

	Open-source Production MD: Gromacs and NAMD
	Gromacs
	A Box of Water
	The SARS-CoV-2 spike protein receptor binding domain (RBD)

	NAMD

	Free Energy Methods
	Excess Chemical Potential via the Widom Method
	Thermodynamic Integration
	The Method of Overlapping Distributions
	Histogram Reweighting
	Adaptive Free-Energy Methods
	Metadynamics
	ABF

